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STATIC ANALYSIS TOOLS FOR EXPERT SYSTEMS*

Elissa Gilbert
Booz, Allen & Hamilton
1725 Jefferson Davis Highway
Arlington, Virginia 22202

Introduction

The idea of artificial intelligence has existed for decades, even before the term was coined at
the Dartmouth conference. This past decade saw this concept begin to be realized, as expert
systems emerged as a viable commercial technology. However, although expert systems began to
be used commercially, little attention was paid to the issue of testing these systems until recently.

This was a dangerous oversight. Expert systems are also known as rule-based programs,
and they are programs. The history of software engineering shows that more than half the cost of
software development occurs during testing and maintenance. There is little reason to expect less
expense from expert system software. Testing expert system software may be even more
expensive since there usually are no requirements or design documents to guide the testing.

There are two kinds of testing that can be used. Dynamic testing consists of running the

program on test cases and comparing the output produced with the output expected. Static testing
is concerned with examining the underlying structure of the program.

*To appear in Proceedings of Test Technology Symposium II, 1989,




Static testing is particularly important for expert systems. Dynamic testing cannot valiaate the
reasoning mechanism, only the results. Because expert systems are usually developed to mimic the
thinking of a human expert in an area in which there is no readily determined right or wrong
answer, it is not enough that the system produce the right answer; it must produce the right answer
in the right way before the system cau be trusted. This means that the structure of the rule base,
which indicates the reasoning, must be verified. Static analysis provides a way to examine the
structure. Since the expert system'’s output depends on the inference mechanism as well as on the
rules, static analysis alone is not sufficient. It should be used as a complement to, not replacement
for, dynamic testing.

STATIC ANALYSIS TOOLS FOR TESTING, EVALUATING, AND
DEBUGGING EXPERT SYSTEMS

Several static analysis tools have been reported in the literature. This paper discusses the
techniques used in four recent tools. CHECK, described in [6], is the earliest of the tools
described here. It provides static analysis checks for the Lockheed expert system shell. EVA, the
Expert Systems Validation Associate, described in [9] is intended to be used for a variety of expert
system shells, such as KEE and ART. The Expert System Parsing Environment, ESPE, is a tool
for analyzing expert systems developed with IBM's Expert System Development Environment. It
was a research project at R.P.1, reported in {2, 3, 4, 5, 8]. The Expert System Examiner, ESE, is
a tool developed by Booz, Allen, & Hamilton while testing expert systems for a government
agency. ESE is based on ESPE, and has been used 1o test three expert systems developed with
several different shells.

These four tools, developed independently (except for ESPE and ESE), share much in
common. All of these tools either implicitly or explicitly consider an expert system's rule base to
be a graph or network. In the graph of a rule base, there are nodes that represent rules and nodes
that represent the hypotheses that appear in the rules’ premises and conclusions. There is an arc
from a hypothesis to each rule whose premise it appears in. There is an arc to a hypothesis from
each rule that asserts the hypothesis in its conclusion.

ESPE can plot the graph of the expert system. It can display the rules several ways. The
entire rule base can be graphed. Graphs involving only specified nodes can be plotted. It also can
plot the subset of the rules that are contained in a specified focus control block (FCB). FCB's in
the Expert System Development Environment organize the rules and structure the inference
engine's search. FCB's form a tree which can also be graphed.

Given the graph of the expert system, cycles can be detected. Cycles may or may not be an
error, depending on the inference engine and the rule base. EVA also checks for overlapping
cycles (cycles which share some common rules), which it considers evidence of a poorly-structured
knowledge base.

ESPE and ESE count the number of paths between all pairs of nodes in the graph. Each path
represents a potential flow of control. ESE's calculation of paths is a little more complicated than
ESPE's, because it allow variables in rules. Variable nodes in a rule premise or conclusion
duplicate that rule for each possible value of the variable.




In addition to calculating paths, ESPE and ESE allow you to examine path lengths. A long
path may indicate tricky or contorted reasoning. A short path may indicate jumping 10 a
conclusion. The user specifies what a long or short path is.

Input and output nodes can also be identified from the graph. Input nodes appear only in the
left hand side of rules. Output nodes appear only in the right hand sides of nodes. The meaning of
these nodes depends on the inference engine. In some expert system shells, unless these nodes are
specified as user-supplied values, or as goals, they are errors, and cannot lead to further rule
execution. Some authors refer to these as dead-end or unreachable nodes,because of this.
Unexpected values in the lists of input and output nodes reflect incomplete lines of reasoning.
Unexpected input values mean that a line of reasoning that should generate that value is missing.
Unexpected output values mean that some line of reasoning that should use that value is missing.

Each of the tools checks the expert system rule base for logical inconsistency. There are three
kinds of inconsistency that they look for. Redundancy occurs when two rules have the same
premise and the same conclusion. Conflict occurs when two rules have the same premise but
different conclusions. Subsumption occurs when two values have the same conclusion and one's
premise is a subset of the other's. CHECK also looks for unnecessary IF conditions. An
unnecessary IF occurs when a condition in one rule's premise conflicts with an [F condition in
another rule, all other conditions in the rules’ premises are the same, and the rules' conclusions are
the same.

The tools identify inconsistency by comparing pairs of rules. Rushby, in {7], points out that
this pairwise consistency check is not sufficient, as a sequence of several rules may lead to conflict.
EVA has another form of logic checker that may solve that problem. It uses the meta-predicate
"incompatiblz" to discover whether the system can derive inconsistent situations such as A and not
A. The real power of this mechanism is that it is not restricted to checking pairs of a condition and
its negation; it can check any logical constraint. In the future, when expert systems are developed
with requirements specifications that specify illegal situations, this type of logic checker will be a
powerful tool in verifying hat a system meets its requirements.

EVA's logic checker verifies negative constraints that specify situations that must not arise.
There may also be positive constraints, specifying conditions that must be satisfied by facts in the
knowledge base. EVA's semantics checker verifies that those constraints are consistent and are
satisfied by the rule base. -

ESPE and ESE compare pairs of goal (output) values. Either all pairs may be compared, or
just a specified pair. Diffences and similarities in the values that lead to these conclusions are
reported. For example, consider the rules "if animal_class = mammal and animal_color = tawny
and animal_appearance = stripes then animal = tiger" and "if animal_class = mammal and
animal_color = tawny and animal_appearance = spots then animal = cheetah". If these are the only
two rules that conclude tiger and cheetah, the differences between "animal = tiger" and "animal =
cheetah" are "animal_appearance = stripes” and "animal_appearance = spots".

In addition to the actual differences between goal values (information useful for debugging
why erroneous conclusions are drawn), the pumber of differences is an indication of how closely
related the values are. In the above example, the conclusions cheetah and tiger differ by only two
values, indicating they are closely related. Very closely related pairs should be examined. If it is




irepertant to distinguish between the values, it is important that the values that decide between them
will be known with certainty in the environment in which the expert system will be used. If we
must be able to tell a cheetah from a tiger, but probably will not know whether it has spots or
stripes, this expert system, while technically correct, will not be useful.

Whea all pairs of output values are compared, ESPE and ESE count how often each non-
output value is a difference between a pair of output values. This is a measure of the extent to
which the expert system relies on that parameter to decide among possible conclusions. This
information is useful in evaluating the expert system. Even if the system is correct, if it relics
heavily on information not likely to be known with certainty in your environment, it is not 2n
appropriate system for you to use. In the above example, animal_appearance is used to decide
between cheetah and tiger. If animal_appearance is often used to decide between possible output
values, but the it will not be known in the environment in which the expert system will be used, or
will not be known with certainty, this may be an inappropriate expert system.

ESPE and ESE also compare pairs of input values, either all pairs or specified pairs,
identifying differences and similarities in the conclusions they can lead to. This can identify values
that should influence the outcome (reach different decisions for different input values), but do not.

ESE can also compare rules that reach the same conclusion. Most likely, these rules should
differ only slightly. Rules concluding the same vaiue from vastly different premises should be
double-checked.

ESE and ESPE produce a report summarizing the rule base. Both report the number of rules
and of values, and identify the input and output values. ESE also calculates the average use of a
parameter, and how big the average rule is.

Although most of the techniques implemented by these tools are applicable to any expert
system developed with any expert system shell, many shells have unique features which, though
powerful, should be closely examined. ESE lists "special” nodes, dependent on the shell. For
expert systems developed with Nexpert Object, the report indicates the usage of nodes for strategy,
retrieve, execute, write, createobject, deleteobject, show, and reset, and count the number of times
they are used. All these nodes affect the state of the expert system without asserting a value, and
should be examined.

All the static analysis features described so far examine only the 1ale base. However, an
expert system rule base may be composed of objects as well as rules. The knowledge
representation contained in these objects must be verified as well as the reasoning expressed in the
rules. ESE is the only tool discussed in this paper which explores the structure of the knowledge
representation.

ESE produces a summary report which shows how many classes and objects there are. It
lists the average number of classes, subobjects, and properties per object, and the average number
of subclasses and properties per class. These numbers give a feel for the level of description
associated with each item. For Nexpert Object, the report also lists slots of objects which have IF
CHANGE metaslots associated with them; it also sorts and lists object properties by their inference
category. Object's contexts can also be reported. IF CHANGE metaslots, inference categories,
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‘comcxts are all mechanisms that affect the state of the system, or its control, outside of the

ESE allows the tester to identify objects that belong to few or many classes, or have few or
many subclasses or properties. The user can also identify classes that have many or few objects in
them, many or few subclasses, and many or few properties. The user decides what few and many
means; the average numbers in the summary report provide guidance for this. This can identify
objects which are poorly represented, or objects which have extraneous detail.

STATIC ANALYSIS TOOLS FOR MAINTAINING EXPERT SYSTEMS

Development of an expert system, or any software, does not end with the test and release of
the product. Maintenance and enhancements to the system occur and need to be tested. This is
especially true for expert systems, as they are developed via a rapid-prototyping methodology.
Rapid prototyping results in several versions of the expert system in quick succession. Booz,
Allen's client produces a new prototype approximately every cight weeks. The new prototypes
must be tested, both to verify that the old functionality continues to work and to examine the new
capabilities.

The static analysis tools described for testing can be used to examine each new release.

However, the techniques described above aren't helpful in comparing the two systems, to assess

growth of the system. They don't ease the burden of regression testing. Static comparison of
two rule bases can be useful for this.

ESPE provides tools to help the developer assess the effect of changes before they are made.
It requires the user to load the original rule base. The user can then enter any number of new rules,
or modify or delete existing rules, and get a report showing the effects of these changes. Effects it
looks for are the addition or deletion of nodes or paths, changes in the input or output nodes,
changes in path length, inconsistency of new rules and old ones, and changes iu ihe differenccs
between pairs of goal values.

Booz, Allen has implemented a variation of this. Instead of the user interactively entering
changes and noting their effects, two complete rule bases are compared. Their differences,
resulting from modifications made to refine the prototype, are reported. Identifying no differences
between parts of the two systems is as important as identifying differences. No differences indicate
no change, and therefore the regression tests need not cover that part of the system.

The comparison of the expert systems first notes changes in the size of the rule base, in both
the number of nodes and the number of rules. Changes in the average use of nodes and the average
size of rules are reported. It also lists nodes and rules that were added or deleted. Deletions in
particular should be verified because they remove knowledge from the system. The comparison
checks if any rules in the new rule base are inconsistent with rules in the original. It finds changes
in input/output nodes. Paths that have been added to the rule base are reported, as are paths that
have been deleted. Pairs of nodes where the length of the longest or shortest path between these

s has changed are also listed.




The object representation is also compared. Changes in the number of objects and classes an:
reported, as are changes in the averages of the number of classes objects belong to, number of
subobjects objects are composed of, the number of properties describing an object, the number of
subclasses a class has, and the number of properties describing a class. It lists objects and classes
that were deleted from or added to the system, and identifies objects and classes that have been
modified. It also finds properties whose metaslots have changed. Finally, it can identify objects
that have changed contexts, and contexts which have different objects in them.

STATIC TESTING IN PRACTICE

While much has been written about these tools, little has been writen about whether they were
actually used in testing real expert systems, whether they proved practical and provided benefits to
their users.

Nguyen tells us that CHECK "was devised and tested on a wide variety of knowledge bases
built with a generic expert system shell.” He does not say whether it proved useful to them,
whether it found errors that otherwise would not have been caught, and what role it played in their
testing process. Although EVA is a comprehensive tool, there is no indication of where or how it
is being used. ESPE was developed as a university research project. Though commercially
sponsored, there is no indication that its techniques are being used by the sponsor.

One real-world use of a consistency checker was reported by Bachant in [1]. Though an
automated rule checker was used, it wasn't found helpful as the level of consistency within the
system, XCON, was very low. Bachant says that checking many aspects yielded too many
exceptions for the process to be meaningful. This would seem to indicate either a problem with
their definition of consistency or with their rule base. It doesn't indicate that static analysis is not
worthwhile.

Unlike the other tools reported, Booz, Allen's tools were developed not as research efforts,
but as tools to be immediately put to use testing real-world expert systems. They have been used to
test three different expert sytems which were developed using three different expert system shells.
These were ESL (a Lisp-based expert systems language), a pseudo-English, and Nexpert Object.
The tools were able to be used with only minor changes to the component that parses the expert
system, indicating the broad applicability of its techniques.

Not ail the features of Booz, Allen's tools have been used. One reason for this is that the
tools are written in Common Lisp, and the rule bases are large (thousands of rules). These two
factors combine to make static analysis a slow process that generates a 1ot of output. However, the
summary reports, path calculation, and consistency checker have been found useful. If rule bases
were developed more modularly, the tools could be applied to each module separately, generatng
results more rapidly, with less output produced.

The consistency checker identified several problems with the rule bases. With large rule
bases, these error could not easily be found through tests or through manual examination of the rule
base. The strength of the summary report and path calculation is that they retroactively document
the system and provide insight into its structure that would otherwise have to come {from long,




manual study of the intemals cf the expert system. Even though input and output nodes appear to
be basic information, there is often no documentation indicating what inputs the system expects and
what output it is expected to produce. By identifying these nodes, ESE provides a starting point
for the testing process.

CONCLUSIONS

Testing all software is a challenge. Testing expert systems is an even greater challenge, due
to a lack of requirements and a "hidden" flow of control, as well as the inherent challenge of
verifying non-algorithmic processes. Static analysis of an expert system is an important part of its
verification. The tools described in this paper can simplify the process and provide valuabie
information to the system's tester.
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guestions for the user commuaity.

The goal of this chapter its two-fold. First, we present a
general approach and point toward specific methods for testing
and evaluating expert systems. Recognizing that experience 1in
software testing has shown that no single method 1is completely
adequate (e.g., Beizer (101; Bellman and Walter [11]; and Howden
(34]), the approach iz multi-faceted. It has been successfully
used to evaluate expert systems and other forms of advanced
information and decisicen suppnrt svstem (DDS) technology {(e.g.,

+

a2e Adelman on? Denonell (e 'n  additicn, we will review
different methcds for implementing each facet of the approach,
and provide a framework for integrating their results (e.g., see
Ulvila et al., [64]).

The second goal (B to osrist in the integration of test and

eva.uailon methodse into the design and development process. Tegt

*In S.J. Andriole and S.M. Halpin (Eds.), Information Technology for Command
and Control. NY: 1EEE Press.




and evaluation represgents the contrel mechaniem in pcftwace
syetem design and development. This {8 no less true for expert .
systems than for more conventional forms of software, for teet
and evaluation provides the feedback that keeps the development
process on track. In fact, {t ls perhaps even mcre important for
expert systems because their development procese emphacizes
prototyping. Consequently, this chapter also 1identifies the
applicability of different classes of evaluation methods to

different stages in the design and development procees.
OVERVIEW

This section pregente a hlueprint for system development, a

multi-faceted evaluation approach, and integrates the twa.

System Development Blueprint

Figure 1 presents Andriocle's [7] "nine step protoytyping.
design blueprint” for developing decision support systems (05S8g).
We emphasize "DSS" instead of restricting ourselves to expert
system technology for three reasons. First, expert systems are
most often seen by potential users (and sponsors) as aids to
supporting, not repla;ing human decision makers; for example, see
the surveys by Constantine and Ulvila {14] and Mackie and Wylie
{43]. Second, expert systems are alsc often seen by members of
the technical, development community as a type of DSS. Mittrs
[4€6) has, for example, shown that the components of an expert

syetem correspond quite naturally with the elements o0of +the

typical DSS. And, third, the DSS design blueprint '3 consigtant
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with more traditional snftware system development frameworks
(e.g., cae Sage [(67]1). In particular, it 1&g gquite congietent with
the system engineering phasesr in the "knowledge activity matrix”
proposed by Rook and Croghan [54] to help structure knowledge
acguisition and specification tasks so as to facilitate the
transition of expert systems from laboratory to operational
settings.

Requirementse analysie ig the first estep, and it hag Dbeenr
referred to as "systems targeting”™ by Andriole [7]. Its goal 1is
to profile the user, the tasks that s/he perform, and the
organizational c;ntext within which the ugser and svstem wil:
operate. Reguirements analyeis have too often been absent fron
expert system development efforts. As Culbert et al. [16], Green
and Keyes (31], Rook and Croghan [54], and Rushby [55] note, such
an omission has significantly impacted the formal testing and
evaluation of expert systems. Moreover, it has undoubtedly
delayed the transition of some expert systems to operational
settings because the user community targeted as 1its operators
have not had a significant role in tailoring the system. Previous
research (e.g., Adelman [1]); Huber {[35]; Shycon {59]) has
documented the importance of user involvement to the successful
implementation of advanced information and decision technology.
Although the general approach and many of the evaluation mathods
are still applicable even if a requirements analysis has not been
performaed, we will assume that it has been performed <throughout
the remainder of this chapter. This assumption is consistent with
our goal of bringing software engineering principles and methods

to bear on the expert system development process.




The second step in Andriple's deecign blueprint te functionusi
modeling. Although there are nu'meroue waye to model a DSS, the .
goal of each is to chow decision makers exactly what the system
will be capable of deoing, and how 1t will do it. Thisg s where
storyboards (Andriole [{8)}), which are paper-and-pencil prototypes
of the user interface, are particularly ilmportant.

Tha third step is the gelection of analytical methods for
the DSS's model-based management system. Analytical methods need
to be develaped consictent with the regquirements analysis and
functional models, We assume here the selection of expert syetem
technology methods for expositor} purposes.

The fourth and fifth steps are software and hardware
selection, and the subsegquent design and development of the DSS.
This is where the knowledge elicitation and representation
activities that make expert systems so different from other forms.
of software occurs.

The sixth and seventh steps are system packaging for and
transfer to the host organization. The eighth and ninth steps are
gystem evaluation and feedback, respectively. Consistent with a
prototyping perspective, Figure 1 emphasizes iteration between
the steps in the blueprint. The use of formal evaluation methods

at these steps produces data for effective iteration.

A Multi-Faceted Evaluation Approach

Adelman and Donnell [5] presented a three faceted {or
phased) approach for evaluating DS8Se, and demonstrated its’

potential applicability by using it to evaluate an expert systenm
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prototype. The three phase evaluation approach 18 composed of a
subjective phaee for obtaining uesere’ opinions regarding the
system's strengths and weaknesses; a technical evaluation phase
for "looking inside the black box"; and an empirical evaluation
phase for assessing the system's impact on performance.
Specifically, the subjective evaluation phase focuses on
evaluating the DSS from the perspective 2f potential users. The
goal of the subjective evalusation i to asgess whether the users
like the DSS; what they cansider to be 1its strengths and
weaknegges; and what changes they would suggest for improving it.

The technicai phase focusges, on evaluating the DSS frorm both
an internal (algorithmic and/or heuristic) perspective and an
external (systemic input/output) perspective. For example, most
people considering the technical evaluation of an expert system
might focus on assessing the logical (and functional) adeguacy
and accuracy of its knowledge base. Rushby [55] has called these
"caompetency regquirements.” However, from a transfer angd
maintenance perspective, one also needs to be concerned with
conventional test and evaluation lssues, such as whether the
system can be effectively and efficiently integrated with other
software and hardware systems in the operational environment, and
whether it was designed consistent with the organization's design
and coding standards. Rusby has called these concerns “"service
requirements.” A comprehensive test and evaluation framework
needs to address both classes of requirements.

The empirical evaluation phasae focuses on obtaining
objective measures of the system's performance. The goal of the

empirical phase 1s to assess, for example, whether persons make




gsignificantly beiter or fagster decicionse or use eignificantly
more information ;aorking with rather than without the eystem, and .
to identify mechanisms for improving performance. It is important
to note that the potential users of expert system technology may
not be experts in the substantive domain. In these cases, one
needs both bonified experts and representative users to
participate in the evaluation. The experte are needed for the
technical evaluation of the knowledge base; the users for the
empirical evaluation aof syetem performance. If poesible, experts
should also participate in the empirical evaluation in order to
systematically assess whether sy;tem performance is a function of

user type.

Integrating the Design Blueprint and the Evaluation Approach

Adelman [2] has classified evaluation methods accarding to
the subjective, technical, and empirical phases of the above
evaluation approcach. Methods for all three phases are applicable
during steps 8 and 9 (evaluation and feedback, respectively) of
the development process. In addition, specific methods are more
or less applicable to other steps in the development cycle. In
particular, subjective evaluation methods tend to be most
applicable early in the cycle (stepe 1 and 2) because they
represent an explicit means for defining the judgments of members
of the sponsoring team and potential users of the system. For
example, Rockmore et al. [53] used a subjective evaluation method
called multi-attribute utility aseesement (MAUA), and a MAUA-

based cost-benefit analysis, to select among various types of DSS
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technology, including expert systems, for subsequent development.
Slagle and Wick {60] used a subjective method analogous to MAUA
to evaluate candidate expert system application domainsg. And
Bahill et al [9)] used MAUA to addrese the valuative and technical
judgments inherent in selecting among expert system shells.

Technical evaluation methods are most applicable in software
design and development (step 4). For example, as part of the
knowledge elicitation and representation process one chould
routinely assess the adequacy and accuracy of the knowledge base.
This can be accomplished in formal evaluations, as well as
through informal ;nes, by using (1) static testers to help assess
the knowledge base's logical consistency and completeness, and
(2) experts, both tho#e participating in development and those
acting as evaluators, to help assess the knowledge basge's
functional completeness and predictive accuracy. In addition,
traditional software test and verification methods can be used to
help assess the "service"™ versus "competency”™ reguirements of the
expert system. These methods have considerable applicability (a)
prior to programming code for verifying reguirements analyis
documentation and functional models of the software (steps 1 and
2), and (b) once the development process is well underway during
hardware configuration, system packaging, and system transfer
(steps 6 and 7).

In contrast to technical evaluation procedures, which focus
on how well the system was developed, empirical evaluation
methods focue on how well decision makers can perform the task
with (versus without) the system. Remember, the expert system may

be addressing only part of a much larger organizational decision.




Even {f the technical evaluation of the knowledge base sgshaows that
it' hag perfect predictive accuracy, the expert eystem's .
contribution still may not ensure better decizion making for the
larger decision problem.

From an iterative, prototyping perspective, it is
anticipated that experiments will be conducted throughout
software development (step ¢) and hardware configuration (step 5)
as a meang of objectively measuring the performance of the gyestem
and testing hypotheses for improving it. During this iterative
process, experiments also can be used to evaluate system
documentation (step 6). Pribr to software development,
experiments can be used in evaluating alternative storyboards.
After transferring the system to the test organization,
experiments, quasi-experiments, and case studies can be used +to
evaluate performance in the operational setting. Finally, there.
are other empirical evaluation methods. In particular,
simulations and statistical analyses of historical data are
sometimes applicable during reguirements analysis for assessing
the potential utility of DSSs using different analytical methods.

The remainder of this chapter will overview subjective,
technical, and empirical evaluation methods. A book-length

treatment of these methods can be found in Adelman {3].
SUBJECTIVE EVALUATION METHODS

The goal of subjective evaluations is to assess the system
from the perspective of potential usere and sponsore. This 1is

accomplished by identifying measures of effectiveness (MOEs) that
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will provide the information required to assess the systen's
utility. The explicit identification of MOEs 1is particularly
important at the beginning of the development process because
they represent (a) reference ovoints for the development team to
use, and (b) criteria for evagluators to monitor in order LO
assess whether the development process is on track.

Gaschnig et al. [28, p. 258} have emphasized the importance
of developing MOEs early in the expert system development
process. "It is important for system designers to be clear about
the nature of their motivations for building an expert syster.

i

The long~range goals must also bge outlined explicitly. ITnus stage

1 of a8 system's development, the initial design, should be

acccmprried by explicit statements of what the measures of the

program’'s success will be and how failure or success will be

evaluated. (itallics theirs) It is not uncommon for system
designers to ignore this isgsue at the outset, since the initial
challenges appear so great upon consideration of +the decision-
making task that their expert system will have to undertake. If
the evaluation stages and long-range goals are explicitly stated,
however, they will necessarily have an impact on the early design

of the expert system.™

Multi-Attribute Utility Assessment

Riedel and Pitz (52, p. 8861, as well as others (e.g.,
Adelman and Donnell {5]; Andriole [7]; Keeney and Raiffa [37);
Ulvila et al. [64]), have pointed out that Multiattribute Utility
Assegement (MAUA) "ees provideg a formal structure for

conceptualizing MOE's, a mechanism for both decomposing the




global MOE into ite component dimeneiong and for reintegrating
them to yield one summary measure of value." When applying MAUA ‘
to the evaluation of expert systems and other types of DSS, the
sytem 1iIis <conceptually decomposed into attributes that can be
defined well enough so that one can obtain either subjective or
objective measures (MOEs) of how well the system performs on each
attribute. This decomposition typically proceeds through the
creation of a value hierarchy, such that the global attribute
entitled "the overall uwutility {or wvalue) of +the DS8* ig
decomposed into major categorlies of attributes, which are further
decomposed, and so forth, until ;ne is reasonably confident that
one can define and obtain preciee, reliable, and velid mesgures
{(or scores) of the system on each attribute. Table 1 presents the
value hierarchy developed by Adelman and Donnell [5].

Reintegration typically occurs within MAUA through the.
application of utility functions and relative importance weights.
An expert system is usually evaluated on many different
attributes, all of which need to be defined as precisely as
possible. The natural measurement scale for an attribute depends
on the nature of the attribute. For example, the scale for an
attribute could be in objective units (e.g., minutes for time) or
subjective units (e.g., answers on a questionnaire) depending on
the attribute. Nevertheless, a common scale 1s required to
compare scores on one attribute with scores on another, that |is,
"apples with oranges,” and, by so doing, obtain an overall score
for the eyetem. A utility ecale, which conceptually measgures

psychological wvalue or satisfaction, meets this requirement.
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Utility {or wvalue) functions are used to translate gsysten
perfaormance on an attribute {(nto a wutility scoce on  that
attribute. Then, relative importance weights (or other forms of
decision rules) are une to assesgs the relative value of a utility
score on one attribute with the utility score on another and,
thereby, obtain an overally utilility ecore for the syestem. {Thi-=
weighting procedure is formaiily valid {f additivity aczumptions
are met; see Keeney and Raiffa [{37). An asgsumption of additivit:

is generally a reasonable approximation; see Edwards [241].)

Other Subjective Evaluaticn Movhods

There are other subjective evaluation methods besidas MAUA.
For example, Adelman [3] also discusses traditional cost-benefit
analysis, the dollar-equivalent technique, decision analysis, and
a MAUA-based cost-benefit analysis. In addition, Liebowitz [(42]
has used the Analytical Hierarchy Process developed by Saaty
[66], Tong et al. [63) have proposed a frame-~based approach, and
Klein and Brezovic [([39] and Slagle and Wick [60] have. used
subjective evaluation approaches analogous to MAUA. It is
important to emphasize that in all cases these methods use
personal judgments. This initially might be disturbing to {anc
difficult for) members of both the sponsoring and developinc
teams, for it emphasizes the subjective process decision makers
go through when evaluating DSSs. To quote Riedel and Pitz (52,
pp. 987-988], “There is no way to avoid the fact that the overall
MOE must be based on such judgments, or the fact that nc
mechanical procedure can replace this subjective assessment....”

Through the explicit identification of MOEs and procedures for
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converting performance ecoreg 1into a global MOE, cubjective
evaluation methode provide refencénce pointe for the development
team to use when developing the expert cystem, and criterta for
the evaluator to monitor in order to assess whether the

development process is on track.
TECHNICAL EVALUATION METHODS

Three classes of technical evaluation methods are, (n turn,
briefly overviewed 1in this chapter: (a) static testing for
aesessing the logical consistency and adequacy of the knowledge
bace; {b}) using domain experté for assessing the functional
completeness and predictive accuracy of the knowledge base; angd
(c) conventional software test and verification methods for

assessing the service requirements of the entire system.

Logical Consistency and Completeness

As Rusby ([55] points out, the concepts of static testing 1in
conventional software testing can be readily extended to expert
systemsg because, in both instances, the focus is on detecting
anomalieg in the program without actually executing it on test
cases. To quote Ru;hby {p- 92), "An anomaly in a program is
nothing more than an apparent conflict between one indication of
intent or purpose and another ...." The types of anomalies of
particular interest in expert systems pertain to the logical
consistency and logical completeness of the knowledge base.

Regsearchere (e.g., Kirk and Murray [38], Nazareth {47], and

Rughby [55]) have developed taxonomies o©r anomalies 1n the

- @




knowledge base Lnal are dwefiduie o0 LW . lC L8IL.hy. owile G. LNSes
anomalies are ligted below. 1n 421ng &80, we Guautue Lat thne
knowledge base is represented in the form of "{r-then' pruaaciion
rules or <can be transformed itntoc such a repiesgnieiion. As
Nazareth [47] pocints out, "For zysteme Llhat empioy mure Cave L ved
representation schemes, the natdace 0f he veliflicualion “ask sy
differ"” (p. 257).

- Redundant Rules. Individual rulwse oy groups oF ruai@s  ud.

essentially have the same conditions and conclusions.

- Subsumed Bules. When one rule's {or rule group <) weianing

is already expressed in another 'z .Lnat reaches e Tang
conclusion from similar but less restrictive cound r1uns.

- Conflicting Rules. Rules (or groups of rules) that use the

same (or very similar) conditions, but result in different
conclusions, or rules whose combination viclates
principles of logic (e.g., transitivity).

- Circular Rules. Rules that lead ane back to an initial {or

intermediate)}) condition(s) instead of a conclusion.

- Unnecessary If Conditions. The value on a condition does

not affect the conclusion of any rule.

~ Unreferenced Attriboute Values. Values on a condition that

are not defined; consequently, their occurrence cannot
result in a conclusion.

- Illegal Attribute Values. Values on a condition that are

outside the acceptable set of values for that condition.

- Unreachable Conclusion (and Dead Endg). Rules that 43 not
connect input conditions with output conclusions.

Static test.ing for the above anomalies could be performed
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manually for emall, well etructured knowledyges bLacer. For ORSTTS o
moderately e;zed knowledge baseg, however, thie approach &
precluded by the amount of effort required and the probability of
disagreements among testers. Coneseguently, researchers {e.qg.,
Culbert and Savely [17]; Franklin et al. {27]; Nguyen et al.
{483}; Stachowitz et al [61]) have begun developing automated
ctatic testers. We do not have the space here to discuss these
different efforts. However, we do want to caution the reader that
automated s atic testers are not without their limitations. To
quote Nazareth [47], "In most cases the verification process s
closely dependent on the structu}e of the problem domain, making
transglation of principles to other systems difficult.
Additionally, only a subset of the errors identified [above] are
covered. «.«» The expansion of verification scope has serious
implications for detection. ... (And] the majority are directed
tuward applications without uncertain inference"” (pp. 265 & 266).
Nevertheless, automated static testers reprecsent a major step
forward in assessing the logical consistency and completenegs of

a knowledge base.

Functional Completeness and Predictive Accuracy

By functional completeness we mean to address the range of
domain-oriented guestions, such as whether the knowledge base
contains all desired input conditions and cutput conclusions, or
even "knows" its knowledge limitations. Some of these guestions
can be answered by domain references. However, the level of

domain expertise typically desired for expert systems is
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typically not codified in such references. [ndeed, Dsvis [i18} has
argued that one of the maior contributione of expert cystem
technology is the organizatinrn and codification impacte {t has c©on
various disciplines. Conseguentlv, domain experts are typically
reguired to evaluate the funct.onal completeness of the systemn.
However, one should remeabeser that the system's level cf
functional comp’ *“eness depends cn its c*tace of develourent and.
most importantly, the domain reguirements resulting from the
requirements analysis (step 1l).

The predictive accuracy of the knowlerye base pertains ¢to
the correctness gy vhich the rulesg (or «hs*tever repr-onertation
echene) relateg input conditions to output conclusiong. Such an
assessment 1is essential for expert systems, for “garbage in” ig
literally "garbage out." Moreover, domain experts, knowledge
engineers, representation schemes, and ellcitation methods all
potentially represent threats to knowledge base validity during
development (Adelman, [{4]}). Experts, both those who participated
in development and those acting as independent evaluators, are
typically used to evaluate the predictive accuracy and thus,
adequacy of the Knowledge base. Expert evaluation typically
proceeds in two ways: through examination of the kncwledge tase.
and the evaluation of test cases.

Expert examination of the knowledge base typically focuses
on whether the system exhibits "correct reasoning."” The obvious
concern is, of course, that the knowledge base not have mistakes.
However, another concern, and one which Gaschnig et al. [281

pointed out is not shared by all developere, ig whether thelir

prograns reach decisgions like human experts do. Many
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peychologiete have long argued that thie concern can 1net bLe
answered for one can not, s0 to speak, look inside an expert‘'s
head to obtain the “correct reasoning.” Inegtead, all one can do
is build “"paramorphic modelg” (Hoffman, [33]) of the reasoning
process, and evaluate their predictive accuracy agalinst test
cases. Indeed, researchers (e.g., Dawes and Corrigan {1973
Einhorn and Hogarth [{25]; Levi [41); Stewart et al. [62] ) have
shown that simple linear models can often result in prediction as
good as that achieved by experts or the far more complex models
found in expert systems.

Thig ig not a reesolved isshe. As Gaschnig et al. {(p. 25%)
point out, "... there 1s an increasing realization that expert-
level performance may require heightened attention to the
mechanisms by which human experts actually solve the problems for
which the expert cystems are typically built.” In additien,
Adelman, Rook, and Lehner [6] found +that domain experts’
judgments of the wutility of DSS (including expert system})
prototypes was significantly affected by the match between how
they and the system attempted to solve the problem. This suggests
that, at a minimum, the system's representation and presentation
scheme needs to be revkewed.

The predictive accuracy of the knowledge base is performed
using test cases and performance standards. The desired standard
is ground truth; that is, the correct answers to the test cases.
Correct answers are most desirable because substantial research
{e.g., see Ebert and Kruse [23]; Goldberg [{30] ; Yu et al. [671)

has shown that experts do not always make perfect inferences and,
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in fact, often disagree w:th one aasother in the kKinds of compliex
domains for which many expert systems are deveioped. Ofiten, 1t is

inappropriate to expect better predictive accuracy from the

system than the expert. (This may not be the case where the
system incorporates knowledge from a limited, well defined
domain--gsuch as a procedure manual-- or where *tne svetem
represents the expertise of several sxperts. Here, it may be
appropriate to expect the system te¢ be more accurste than any
given expert.)

If ground truth measures exigt, one =&zhould cilscriminate
between “accuracy: and “bias" in a signal detection sense (Lenner
[401}). Accuracy refers to the degree of overlap in the
distributions of belief values when the hypothesis is true versus
false. Bias refers to the proportion of false negatives
(hypothesis true, but wuser =says false) to false positives
(hypothesis false, but user says true).

If the correct answers do not exist or, for whatever reason,
are inappropriate for the test cases, then one must rely on the
judgment of an expert or the consensus judgments of a group of
experts. Considerable care muet be given to structuring the
experts’' activities. In particular, the evaluation team must
ensure that the experts are "blind" as to whether the system or
other experts generated the conclusions to the test cases. This
is typically referred to as a "Turing test"” {e.qg, see Rushky
(55]).

In closing this subsection, it is important tc note that
test cage conetruction is an important ieegue. To guote Okeefe et

ale. {49, p. 831, "The issue is not the number of test cases, it
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18 the caveéerage ol teat cacec--that te, how well they reflect tie

input domain. The input domain 1is “he population of permiecgibie .
input...” {1tallics theirs). The reguired coverage capabilities
is <clearly a statement that needs to ke a result of the
requirements analysis. For as O'keefe et al. point out,
developers frequently devote a disproportionate amount of time to
attempting to ensure that the system c¢an handle the truely
"expert” cases that may occur very infrequently. Moreover, these
“infreguent” cages often become the test cases. This may or may
not be appropriate depending on the requirements for the csystem,
and it can certainly be expensivé.

An alternative identified by O’'keefe et al. is to randomly
select test cases using a stratified sampling scheme =such that
the relative freguency of the cases is representative of those in
the operational environment or stipulated in the requxrements..
Additionally, test cases should be chosen to cover sgituations
where a failure in the system would be especially seriocus. It is
also important that same of the test cases simulate +the most

common operation of the system.

Service Regquirements

Verification testing should be systematically performed for
the service requirements of expert systems, just like any other
goftware product. Fagan and Miller {as reported in DeMillo et al.
{20] have ldentified four phases for software testing. The first
phaee ig manual anaiyei& in which the requirements specification

and design and implementation plan are anaiyzed for problems by
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experienced software engineers. Tne secound phase is gtatic
analyeig, which may be manusl or automated, in which requirements
and design documents and software are analyzed, but without code
execution. The third phase is dynamic analysis in which sgoftware
is executed with a set of test data, such as in random testing,
functional testing, and path testing. The fourth phasge, which
Fagan and Miller consider to ne optional, ig attempting tc grove
the program as being correct, such a2 in mathematical
verification. Detailed discussions of these and other methods can
be found in, for example, DaMillo et al. {20}, Fairley 26},

Pressman [51]), and Rushby [55].

Section Summary

In closing, we want to make four points about technical
evaluation methods. First, as Hamlet {32, p. 666] points out,
each method has its strengths and weaknesses and therefore,
represent "imperfect test methods." Therefore, evaluators need to
use multiple methaods to obtain accurate feedback. Second, the
intent of testing is to find errors. As Fairley [26, p. 268]
points out, "... Oone has most —-onfidence in programs with no
detected bugs after thorough testing and least confidence iin 3
program with a long history of fixes."” Third, the best way to
minimize the number of errors and the amount of time, effort, and
money reguired to fix them, 1ls to eliminate errors early in
development. Consegquently, as Gelperin and Hetzel ({29] point out,
software development 1ife c¢ycles are becoming "preventive”
through the application of gsoftware testing methods early in the

develaopment process. And, fourth, testing methods using esxperts
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to evaluate the knowledge bage rely heavily on empirical analyeile
vis test data. However, the reader <chould keep a clear
distinction between the empirical regulte of technical and
empirical evaluation methods. The former focus on how well the
expert system's knowledge base was developed; the latter focus on
how well system users, who may not be experts, can perform the

task with versus without the expert system.
EMPIRICAL EVALUATION METHODS

Empirical evaluation methods can be classified into
experiments, quasi-experiments,'case studies, simulations, angd
statistical analyses of historical data (e.g., see Adelman ([3]).

Only the first two methods are considered here.

Experiments

Experiments are, by far, the most common and commonly
thought of empirical evaluation method. Moreover. they are
particularly appropriate when a number of people would actually
use the developed expert system, for experiments are designed to
help generalize from a test sample to the larger population.

One typically thi;ks of two kinds of experiments. The first
kind tests the system against objective benchmarks that represent
performance constraints. If the system passes the benchmarks, it
proceeds further; if it faile, 1t undergoes further development
or is set aside. "For example, it ig not enocugh to know that with

the aid the user can arrive at a decision in 30 min. If the

organizational user required a decision in 30 min, the aid would
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be effective. If a decision was needed in !5 wmin, the aid wculd
not be effective® {(Riedzl and Pitz [52, pp. 984-885]).

It =should be noted that such performance benchmarxs differ
from the more traditional time and efficiency measures used to
benchmark computer =systems. [Note: Readers interested in the
latter are referred to Press {50}, who benchmarcked different
expert systems on the time required to lcad and execute different
typee of knowledge Lazses, and the amount of digk space regquired
in source and fast-load formats.) Both classes of benchmarks
typically get developed during reguirementse analysesg emphasizing
a features-based ;pproach. Although such performance -~orstraints
may be necessary in real-time, life-critical activities, they are
unnecessary for many expert system applications.

Second, performance benchmarks represent non-compensatory
decision rules; that is, the system's other features do not
compensate for failing the performance benchmark. Such a position
may be inconsistent with the compensatory decision rule guiding
the sponsoring team’'s intuitive decision making processes or more
formal subjective methods, such as MAUA. After all, it's quite
possible that +the sponsoring team might be willing to give up
some time for task accomplishment (or some whatever) in order to
gain even alittle improvement un other MOEs, such as decision
performance or personnel staffing requirements (or whatever).

The second kind of experiment, and the one that is focused
on here, is a factorial desgign (e.g., see Cochran and Cox [13])
where (a) one or more factorg are systematically varied as the

independent wvariable(s), and (b) the dependent wvariablaz(g) asre

guantitative, objective measuras of system performance. There are
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five basic componente of factorial experimente. Firet, there are
the participants in the experiment. These may or may not be‘
experte depending on the targeted usgere of the esxpert cystem's
advice. We focus on "users" because the system operatore may or
ma; not be the actual decision makers.

Second, there is the task(s) that the participants are to
perform during the course of the experiment. Test cases are often
embedded in larger scenarios representative of the organization’'s
problem solving environment in order to effectively assess (1)
the users' ability to solve problems with and without the system,
and {(2) their opinion of systeh characteristics, such as its
speed, explanation capabilities, organizational fit, ete.
Remember, the expert system may be addressing only part of a much
larger organizational decision.

Third, there is thg experimental condition(s) or independent
variable(s) of interest, such as whether the participants perform
the task with versus without the expert system. The level of task
difficulty should be either as representative of the operational
environment as possible or matched to the required performance
capabilities of the system. The capabilities of the system depend
on 1t stage of development (e.g., see Gaschnig et al., [281];
Marcot, (44]}).

Fourth, there is the dependent variable(s) {or MOEs) of
interest. Objective measures (e.g., performance and speed),
observational measures (e.g., regarding how the system is used)
and subjective measures (e.g., user confidence in the =solution)

can all be used as the dependent variable(s). In the case of
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decision gquality, one should use either ground truth measures
{l.e¢., the correct anewer) for the task or, 1f they do not exiet
or‘ are inappropriate, the collective judgment of two or more
experts given the large amount of research showing expert
disagreement. (The use of one expert 1is acceptable if the
reguirement is that the expert system emulate the judgments of
that expert.) If ground truth measures exist, one should
discriminate between “"accuracy" and "bias™ in a signal detection
cense, as was done for the knowledge base. If experts are used,
"blind"” ratings as to which experimental conditions produces ths
solutions are again required to gontrol against bias.

And, fifth, there are the procedures governing the coverall
implementation of the experiment. Substantial care <should be
directed toward accurately representing the unaided as well as
aided condition to ensure a fair test. If performance is better
in the "aided” condition, we want to be able to say that it is
due to the expert system and not some other extraneous factor. In
order to do so, we need to (ideally) try to caontrol for alil
"plausible rival hypotheses™ (Campbell and Stanley, (12, p. 361])
that might explain the obtained findings. Toward that goal we
introduce the concepts of reliability and validity.

Yin [66, p. 36] defines reliability as "demonstrating that
the operatione of a study--gsuch as the data callection
procedures~--can be repeated, with the same results.” The key
concept 1is replication. In contrast, "valid" is defined by
Webster's dictionary (65 , p. 1608] as +that which 1is sound
because {t 1lg "well grounded on principles or evidence."” If an

experiment is valid, its conclusions can be accepted; that 1is,
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rival hypotheses have been caontrolled for.

An experiment can be reliable, but its conclusions invalid. .
However, an experiment can not be valid if it 1s unreliable; that
iz, one can not conclude that the results are well grounded if
the evidence upon which they are based is undependable. The basie
for good experimentation 1is, therefore, reliable (i.e.,
dependable) procedures and measures. Although far from +trivial,
reliability is typically possible in experimentation because of
high experimenter control. For example, the experimenter can
pllot-test and subsequently modify the procedures and measures
until they produce the same re;ults when applied to the same
situation, regardless of who performs the experiment.

We consider four types of validity. First, Yin [66, p. 36]
has defined internal validity as ‘“"establishing a causal
relationship, whereby certain conditions are shown to lead to.
other conditions, as distinguished from spurious relationships.”
As Cook and Campbell [15, p. 38] note, "Internal wvalidity has
nothing to do with the abstract labeling of a presumed cause oar

effect; rather, it deals with the relationship between the

research operations irrespective of what +they theoretically

represent” {(itallics theirs). Although there are numerous threats

to internal validity, randomization of participants to
experimental conditions is the most effective means for guarding
against them.

In addition, one needs tao consider the experiment's
construct validity, its statistical conclusion validity, and its

external validity. Yin {66, p. 36) has defined construct validity




as "... establishing good cperational measures for the concepts
being estudied.” Congtuct validity ig required in order to “make
generalizations about higher-order constructs from research
operations"” (Cook and Campbell {15, p. 38) in a particular study.
Bood construct validity means that we a&re measuring that, and
only that which we want to be measuring. Of particular concern in
expert system evaluations is that the "system *reatment” is not
confounded by something else. If confounding exists, then the
"something else” represents rival hypotheses that could explain
our obtained results.

“Statistical‘ conclusion validity 1is concerned not with
sources of systematic bias but with sources of random error and
with the appropriate use of statistice and statistical tests”
(Cook and Campbell (15, p. 80]1}. The former concern s with
whether the study is sensitive enough to permit reasonable
statements regarding the covariation between the independent and
dependent variables. The latter concern is with what coenstitutes
appropriate statistical tests of these statements; in this
regard, see O'Keefe et al. [49)] for expert systenms.

ARs Camphell and Stanley [12 , p. 5] point out, “External

validity asks the question of generalizability: To what
populations, settings, treatment variables, and measurement

variables can this effect be generalized?" (italics theirs).
Within the context of expert system evaluations, external
validity deals with the extent to which the results of an
experiment conducted 1in a simulated {(laboratory) setting will
generalize to an operatiaonal environment. Consistent with an

iterative, prototyping approach, the representativeness of the
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experimental setting and the level of the eyetem’'s performance
requiremente eshould advance throughout the develop‘ment cycle. .
Although the latter is routinely acknowledged, the fc.mer i not.
It must be remembered that most information and decigion
technolagy fails to be successfully implemented for
organizational, not technical reasons. Consequently, increasing
the fidelity of the organizational and environmental interfaces
between the system and its users is essential in generalizing the
performance results obtained in the laboratory to the real world.

!

Quasi-Experiments

Ideally, field experimentation would be used to assess |if
the expert system significantly improved performance in an actual
organizational setting. For example, appropriate organizational
units (e.g., sections in a company or governmental agency) would.
be randomly assigned to the "with system”™ and “"without system"”
conditions, and their performance measured until it stabilized.
If possible, a "placebo" condition would be included too.
Organizational units in this condition would be given some
*treatment” that was not hypothesized to have any effect on
performance. This is analogous to giving patients sugar pills
when evaluating new drugs, and is oriented to controlling for the
"Hawthorne effect” (e.g., see Schein [5B])) confounding in the
"with system® condition that is the result of being given special
treatment and not the technology. The unit of analysis is the
performance of the organizational unit; consegquently, a large

enough sample of units would be required for performing
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statistical tests.

The sample size and randomization requirements of true
experiments is typically not possible 1in many organizations.
Quasi-experimental designs should be used in such situations. To
guote Campbell and Stanley {12, p. 34}, "There are many sgcial
settings in which the research person can introduce saomething
like experimental design into his scheduling of data collection
procedures (e.g., the when and to whom of measurement), aven
though he lacks the full control over the scheduling of
experimental stimuli (the when and to whom of exposure and the
ability to rand;mize exposures) which make a true experimentc
poesible. Collectively, =such situatione can be regarded as quasi-
experimental designs.” {itallics theirs)

There are a numher of different types of gquasi-experimental
designs. Campbell and Stanley {12], for example, identify ten
types. These include, for example, (3) time series designs, wherse
the organizaticnal unit would be measured for a long period of
time before and after receiving the system; (b) nmultiple time
series designs that do not use randomization, but do use a
control group that does not receive the system; and (c)
noneguivalent (and nonragndomized) control group designs that rely
on analysis or covariance to assess whether the pretest and
posttest difference for the expert system group 18 significantly

better than that of the control group.
SUMMARY

This chapter has pregented a rmulti-faceted approach to

testing and evaluating expert systems. This approach is composed

27




of subjective, technical, and evaluation methocds. These methode
can be usged to evaluate the system at the end of development or
used, as we wWould recommend, throughout the development procecs
to provide feedback that keeps development on track.

The different methods overviewed herein address different
test and evaluation criteria. Figure 2 presents a framework that
not only summarizes these criteria, but attempts to integrate
them by wuging a Multi-Attribute Utility Assessment {MAURA)
hierarchy. This hierarchy builds on the previous work of Ulwvila
et al. [64). It can be uced in conjunction with MAUAR ccoring and
weighting procedures to assess ihe overall utility of an expert
system to users and sponsors. Thigs is the top-level of the
hierarchy. The goal of developers and sponsors of expert systems
for operational settings is, of course, the creation of high
utility technology.

The hierarchy has two branches. The first contains criteria
for technical evaluations. These include design and <coding
standards (those shown are adaptations of the relevant standards
from DOD-STD-1675A (21]); DOD-STD-2167 ([22}; JCMPOINST 8020.!
{36); and MIL-STD-1679 [45];) and competency {i.e., knowledge
base) and service (i.e:, conventional software) requirements. The
knowledge base 1is decomposed into logical consistency and
completeness, functional completeness, and predictive accuracy.

The second branch contains criteria appropriate for the
empirical and subjective evaluations. These are grouped according
to performance and usability criteria. Performance is decomposed

into criteria based on ground truth (or experts’ ratings), andg
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the judgments of caers. Seata1lry S utorusGsed into criteria
baged on the observation of participarte working with the eystem
and their judgments of it.

We hope this chapter has made clear that methods exizt for
assessing expert systems on edch of these criteria. That 15 no.
to say that no further deve.opment work ia requ.red, for much
research still remains. Bui L 8 to say that “he test and
evaluatioﬁ community is Dpeginning to sssembhle the r:goroue
procedures and technology required to effectively evaluate expert
systems. Moreover, subjective evaiuation nethods iihe AL -
represent a mechénism for converting the individual asseszaenis
on these diverse criteria into an overall utility measure.
Further research 1is also required here, for there is little
éxperience canverting such assessnments into measures of utility.

Nevertheless, a firm foundation exists upon which to build.

29




FOOTNOTES

Thie paper is based on research efforts performed under (1) .
a subcontract to George Mason University from Sclence
Applicatione International Corporation (SAIC) under a contract
from +the Ft. Leavenworth Field Office of the U.S. Army Regearch
Ingtitute for the Behavioral and Social Sciences (ARI), and (2' a
contract to Decision Science Consortium, Inc. from the U.S5. Army
Electronic Proving Ground (USAEPG). The suthors would like to
thank Dr. Stan Halpin of ARI, Mr. Paul McKeown of SAIC, and Mr.
Robert Harder of EPG for their support. The viewe, opinione,
and/or findings contained in thi% paper are those of the authors
and should not be construed as an official Department of the Army
position, policy, or decision unless so designated by other
documentation.

Dr. Leonard Adelman 1is an associate profesasor in the.
Department of Information Systems and Systems Engineering at
George Mason University, Fairfax, VA, and a Senior Principal
Associate at Decisinen Science Consortium, Inc., in Reston, VA.

Dr. Jacob Ulvila is Executive Vice President at Decision

Science Consortium, Inc., Reston, VA.

0 o




[1]

{23

(3]

[4]

(5]

[6]

STEFEReN.ES

L. Adelman, *Involving —ere in the dee.gr. of decigion-
analytic aids: The principal factor in
gsuccesefulimplementation,” Journal g£ the Operational

Research Society, vol. 33, pp. 332-3¢0, 1682.

L. Adelman, "Evaluating ce<ision suppart systens: Toward
integrating evaluation nevhoda into the develaopment

procees,” in Advanced Technologies For Command and Control

System Engineering, S.J. Andriole, Ed. Fairfax, VA: AFCER

International Press, in yress.

L. Adelman, Evaluating Dec.sion Suppert Systems. wellesley.

MA: QED Information Sciences, in press.
L. Adelman, “Measurement issues in knowledge engineering,”

IEEE Transactions on §Systems, Man, and Cybernetics, in

press.

L. Adelman and M.L. Donnell, "Evaluating Decision Support

Systems: A General Framework and Case Study,” in
Microcomputer Decision Support Systems: Design,
Implementation, and Evaluation, S.J. Andriole, Ed.

Wellesley, MA: QED Information Sciences, 1986.
L. Adelman, F.W. Rook, and P.E. LLehner, "User and R&D
gpecialist evaluation of decision support systems:

Development of a questionnaire and empirical results,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. SMC 15,

pp. 334-342, 1985.




{71

(8]

(2]

(10}

[11)

(12]

(13)

[14]

(15]

3.J. Andriocle, Handbook for the Design, Development,

Evaluation, and Application of Interactive Decision Support

Systems. Princeton, NJ: Petrocelli, 1989.

S.J. Andriole, Storyboard Prototyping for Systems Design: A

New Approach to User Requirements Validation and System

Sizing. Wellesley, MA: QED information Sciences, 1989G.
A.T. Bahill, P.N. Harris, and E. Senn, "lLessons learned

building expert systems,"™ AI Expert, vol. 3, PP 36-4¢5,

1988.

B. Beizer, Software System Testing and Quality Assurance.

New York: Van Hostrand Reinhold, 1984.

K.L. Bellman and D.0. Walter, “Analyzing and correcting
knowledge-based systems regquires explicit models,™

Proceedings of the AAAI-88 Workshop on Validation and

Testing Knowledge-Based Systems, St. Paul, MN, Aug. 20 1988.

D.T. Campbell and J.C. Stanley, Experimental and Quasi-

Experimental Designs for Research, Rand McNally, 1966.

W.G. Cochran and G.M. Cox, Experimental Designs {({2nd ed.).

New York: John Wiley & Sons, 1957.
M.M. Constantine and J.W. Ulvila, "Knowledge-based systenms
in the Army: The state of the practice and lessons learned,”

Proceedings of IJCAI-88 Workshop on Verification, Validation

and Testing of Knowledge-Based Systems, Detroit, MI, Aug. 17

1989.

T.D. Cook and D.T. Campbell, Quasi-Experimentation: Design &

Analysis Issues for Field Settings. Chicago, IL: Rand

McNally, 1979.

32




(16}

{17])

[is}

f19]

[20]

[21]

(22)

(23]

[24]

C. Culbert, G. Ril=y %13 «~,{. S3¥vely, "Approaches to the

verification of rule-pased expert eyeteme,” Proceedings of

SOAR'87: Space Operations~ARutomation and Robotics

Conference, Houston, TX, August 1987.
C. Culbert and R.T. Savely, "Expert system verification anud

validation,"” Proceedings ot AAAI-88 Workshop on Validation

and Testing Knowledge-Based Systems, St. Paul, MN, Aug. 20,

1988.
R. Davis, "Expert systems: How far can they go?" Al
Magazine, vol. 10, pp. 65-77, 1989.

R.M. Dawes and B. Corrigan, “Linear models 1n decision

making," Psychological Bulletin, vol. 81, pp. 97-106, 1975,

R.A. DeMillo, W.M. McCracken, R.J-. Martin, and J.F.

Passafiunme, Software Testing and Evaluation, The

Benjamin/Cummings Publishing Co., 1987.

DOD-STD-1678A: Software Development (Section 5.3, Programing
Standards), Feb. 1983.

DOD-STD-2167: Defense System Software Development (Section
30.3, Detailed Requirements section of General Design and
Coding Standards), 4 June 1985,

R.J. Ebert and T.E. Kruse, "Bootstrapping the security

analyst,” Journal of Applied Psychology, vol. 63, pp- 110~
119, 1978.
W. Edwards, " Use of multiattribute utility measurement for

social decisions,” in Conflicting Objectives in Decisions,

D.E. Bell, R.L. Keeney, and H. Raiffa, Eds. New York: John

Wiley & Sons, 1977.

33




(25]

{26}

[27]

(28]

{29]

{30]

(31]

{32]

HeJ. Einhorn and R.M. Hogarth, "Unit weighting schemes of

decision making,” Organizational Behavior and Human

Performance, vel. 13, pp. 171-192, 19756,

R.E. Fairley, Software Engineering Concepts, McGraw-Hill,

1985,
W.R. Franklin, R. Bansal, E. Gilbert, and G. Shroff,

*"Debugging and tracing expert systems,"” International Hawaili

Conference on System Sciences, January 1988.

J. Gaschnig, P. Klahr, H. Pople, E. Shortliffe, and A.

Terry, “Evaluation of expert systems: Issues and case

H]

studies,” in Building Expert Systems, F. Hayes-Roth, D.A.

Waterman, and D.B. Lenat, Eds. Reading, MA: Addison-Wesley,
1983.
D. Gelperin, and B. Hetzel, "The growth of software

testing,"” Communications of the ACM, vol. 31, pp. 687-695,

1968.
L.R. Goldberg, "Man versus model of man: A rationale, plus
some evidence, for a method of improving clinical

infereuces,” Psychaological Bulletin, vol. 73, pp. 422-432,

1970.
J.R. Green and M.M. Keyes, "Verification and validation of

expert systems,” Proceedings, Western Conference on Expert

Systems, pp. 38-43, IEEE Computer Society, Anaheim, CA, June
1887.
R. Hamlet, "Special section on software testing,"

Communications of the ACM, vol. 31, pp. 662-667, 1988.

34 ‘II'




{33]

[34]

[35]

[36]

(371

[38)

[(3e}

[40]

{41]

(42)

P.J. Hoffman, "the paraampn., = ~ .prosentation of human

judgment,” Peychological Bulletin, vol. %7, pp. 116-131,

1360.

W.E. Howden, "Functional program testing,"” Proceedings of

JEFE Compsac, ppo. 321-325, 1978.

G.P. Huber, "The decision-making paradigm of organizational

design,"” Management Science, vol. 32. pp. 572-583, 1986.

JCMPOINST 8020.1: Independent Saftware Nuclear Safety
Analysis (Change 2, Appendix F, Section 3.6(3),
Specifications and Design Audit and Analysis), 3 March 1984.

!

R.L. Keeney and H. Raiffa, Decisions With Multiple

Objectives. New York: John Wiley & Sons, 1976.

D.B. Kirk and A.E. Murray, Verification and Validation of

Expert Systems For Nuclear Power Applications. McLean, VA:

Science Applications International Corporation, 1988.
G. Klein and C. Brezovic, "Evaluation of expert systems,” in

Defense Applications of AI, S.J. Andriole, Ed. Lexington

Books, 1989.
P.E. Lehner, "“Toward a mathematics for evaluating the

knowledge base of an expert system,” IEEE Transactions on

Systems, Man, and Cybernetics, in press.

K. Levi, "Expert systems should be more accurate than human
experts: Lessons from human judgment and decision making,”

IEEE Transactions on Systems, Man, and Cybernetics, in

press.
J. Liebowitz, "Useful approach for evaluating eaexpert

gysteme,” Esupert Systems, vol. 3, pp. 86-96, 1986.




(43)

[(44]

[45]

[46]

[47]

[48]

(48]

[50]

[(51]

[52]

[53]

R.R. Machie and C.D. Wylie, Technology Transfer and

Artificial Intelligence. Goleta, CA: Essex Corp., 1985,

B. Marcot, "Testing Your Knowledge Base,” AI Expert, vol. 2,
pp. 42-47, 1987.

MIL-STD-1679: Weapon System Software Development {Section
5.3, Programming Standards), 1 Dec. 1578.

8. Mittra, Decision Support Systems: Toolg and Technigques.

New York; John Wiley and Sons, 1986.
D.L. Nazareth, "Issues in the verification of knowledge in

rule based systems,"” International Journal of Man-Machine

]

Studies, vol. 30, pp. 255-271, 1989.

T.A. Nguyen, W.A. Perkins, T.J. Laffey, and D. Pecora,
"Knowledge base verification,” Al Magazine, vol. 8, pp. 69-
75, 1987.

R.M. O'Keefe, 0. Balci, and E.P. Smith, "Validating expert

system performance,” IEEE Expert, vol. 2, pp. 81-90, 1987.

L. Press, "Expert System Benchmarks," 1EEE Expert, vol. ¢,

pp. 37-441' 1989-

R. §S. Pressman, Software Engineering: A Practioner's

Approach. New York: MeGraw-Hill, 1982.
S.L. Riedel, and G.F. Pitz, "Utilization-oriented evaluation

of decision support systems,"” IEEE Transactiaons on Systems,

Man, and Cyhernetics, vol. SMC-16, pp. 980-996, 1986.

A.J. Rockmore, L. Hemphill, R.A. Riemenschneider, M.L.

Donnell, K. Gates, Decision Aids for Target Aggregation:

Technology Review and Decision Aid Selection. (PAR Report

#82-32). New Hartford, NY: PAR Technology Corp.

36




(541

(565]

[(56]

(57)

[58]

[59)

[60)

[(61]

[62]

F.W. Rook and J.W. Croghan, "Trhre knowledge acguisition
activity matrix: A systems engineering conceptual

framework," IEEE Transactions on Systems, Man, and

Cybernetics, in press.

J. Rushby, Quality Measures and Assurance for Al Software.

(NASA Contractor Report 4187) Washington, DC: Natienal
Aeronautics and Space Administration (Code NTT-4), 1988.

T.L. Saaty, The Analytic Hierarchy Process. New York: McGraw

Hill, 1980.

A.P. Sage, "A care for a standard for =s=systems engineering
methodology,i IEEE Transactions on Systems, Man, and
Cybernetics, vol. SMC 5, pp. 156-16GQ, 1977.

E.H. Schein, Organizational Psychology. Englewood Cliffs,
NJ: Prentice-Hall, 1970.

H.N. Shycon, "Ail around the model--perspectives on MS

applications,” Interfaces, vol. 14, pp. 40-43, 1977.

J.R. Slagle and M.R. Wick, "A method for evaluating
candidate expert system applications,"” Al Magazine, vol. 9,
pp. 44-53, 1988.

R.A. Stachowitz, C.L. Chang, and J.B. Combs, "Research on

validation of knowledge-based systems,” Proceedings of the

AAAI-88 Workshop on Validation and Testing Knowledge-Based

Systems, St. Paul, MN, Aug. 20, 1988.
T.R. Stewart, W.R. Moninger, J. Grassia, R.H. Brady, and

F.H. Merrem, Analysis of Expert Judgment and Skill in a Hail

Forecasting Experiment. Boulder, CO: Center for Research on

Judgment and Policy at tha University of Colaorado, 1988.

37




(63]

[64)

[65)

[66]

[67]

R.M. Tong, N.D. Newman, G. Berg-Cross, and F. Rook,

Performance Evaluation of Artificial Intelligence Systems,

Mountain View, CA: Advanced Decision Systems, 1987.

J.W. Ulvila, P.E. Lehner, T.A. Bresnick, J.0. Chinnis, and

J.D.E. Gumula, Testing and Evaluating Qél Systems That

Employ Artificial Intelligence. Reston, VA: Decision

Sciences Consortium, Inc., 1987.

Webster's Seventh New Collegiate Dictionary. Springfield,

MA: G & C Merriam Company, 1966.

R. K. Yin, Case Study Research: Design and Methods. Beverly
!

Hills, CA: Sage, 1984. ,

v.L. Yu, L.M. Fagan, S.M. Wraith, W.J. Clancey, A.C. Scott,
J.F. Hanigan, R.L. Blum, B.G. Buchanan, and S.N. Cohen,
*Antimicrobial selection by a computer: A blinded evaluation

by infectious disease experts,” Journal of the American

Medical Association, vol. 242, pp. 1279-1282, 1979.

38




Expert Systems With Applications. Yol. | gy 237 261 (990
Printed in the USA.

987-4174/9G $1.00 + 00
1990 Pergamo:. Press plc

Testing Knowledge-Based Systems: The State of the Practice
and Suggestions for Improvement

MonNicA M. CONSTANTINE AND JACOB W. ULVILA

Decision Science Consartium, Inc.. Reston. VA, USA

Abstract— The field of knowledge-based systems has recently recognized the importance of verification,
validation. and testing. This paper presents the results of a survev of the testing practices of knowledge-
based systems developers. Common testing strategies are reported and analyzed. Factors affecting
testing are discussed. A comprehensive approach to evaluation is described. General conclusions and

tessons learned are presented.

1. INTRODUCTION

RECENTLY, there is an increasing awareness of the im-
portance of verifying, validating, and testing sophisti-
cated software such as knowledge-based systems. In a
speech to the Annual Symposium of the International
Test and Evaluation Association, Deputy Secretary of
Defense Donald Atwood stated that, “we tend to un-
derestimate the amount of testing necessary in software-
based weapon systems,” and cited evaluation of soft-
ware as ‘‘the fastest growing problem in the Pentagon’s
test programs™ (Struck. 1989).

The Department of Defense is not alone in facing
this grow: 2 problem. Some recent events have shown
that software systems which are not tested thoroughly
can subject software developers to possible legal lia-
bility. For example, “*a computerized therapeutic ra-
diation machine has been blamed in incidents that have
led to the deaths of two patients and serious injuries
to several others. The deadly medical mystery posed
by the machine was finally traced to a software bug.
*Malfunction 54," named after the message displayed
on the operator console™ (Joyce. 1987).

Although this example is extreme, it clearly illus-
trates the important role of software verification, val-
idation, and testing (VV&T). As knowledge-based sys-
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opinions, and/or findings contained in this report are those of the
authors and should not be construed as an official Department of
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of the U.S. Atmy Electronic Proving Ground for his helpful comments
and support.

Requests for reprints should be sent to Monica M. Constantine,
Decision Science Consortium, Inc.. 1895 Preston White Drive, Suite
300, Reston, VA 22091.

tems move from research prototypes to operational
systems in markets such as nuclear power, aerospace,
defense, finance, manufacturing, science., and medi-
cine, more and more managers and developers are re-
alizing the need for more rigorou testing.

Despite the increasing need for more rigorous testing
of knowledge-based systems, tools, procedures, and
methods have only recently become more prominent
in the literature. N.L. Sizemore of Comarco Inc. in
Sierra Vista, AZ, maintains an annotated bibliography
of “Materials Related to Testing Expert Systems.” This
bibliography includes journal articles, book chapters,
and conference presentations related to verification,
validation, and testing of expert systems. As of October
1989, the bibliography contained a total of 135 entries.
Over 70% of the entries appeared since 1987, and over
30% of the entries were from two proceedings, the Au-
gust 1988 AAAI Workshop on Validation and Testing
of Knowledge Based Systems, and the IJCAI-89 Work-
shop on Verification, Validation, and Testing of
Knowledge-Based Systems.

A majonty of the research has focused on one
unique aspect of testing knowledge-based systems-—
the knowledge base itself. One example is EVA, the
Expert System Validation Associate. developed by the
Lockheed Al Center. EVA is a comprehensive tool to
validate any knowledge base written in an expert system
shell. EVA’s 1o00ls include a structure checker, a logic
checker. a semantics checker, a completeness checker,
a rule refiner. a control checker, a test case generator,
an error locator. and a behavior verifier. The tools can
be used as an aid in development, quality assurance,
and maintenance of a knowledge-based system (Stach-
owitz, Chang, & Combs, 1988). At the NASA/Johnson
Space Center, research is conducted on inference en-
gine validation, development methods. and support
tools such as CRSV (Cross-Reference. Style, and Ver-

237




238

ification). CRSV. a companion tool for CLIPS. pro-
vides the ability to verify a knowiedge base. CRSV in-
cludes capabilities for cross-referencing relationships.
style checking, and dynamic tracing (Culbert & Savely.
1988). The Intelligent Machine Laboratory at Worces-
ter Polytechnic Institute is investigating methods for
representing a rule base as an evidence flow graph for
use in verification and validation (V&V). Representing
a knowledge base as an evidence flow graph aids in
detecting unused inputs and subconciusions, unreach-
able conclusions. and relationships between inputs and
outputs (Becker. Green. Duckworth. Bhatnagar, &
Pease, 1989). Bellman and Walter of the Computer
Science Laboratory at The Aerospace Corporation have
developed an approach to V&V that stresses that
knowledge bases are models. and methods to test
knowledge bases should both identify and correct er-
rors. The methods include incidence matrices. CART
for classifying cases, and techniques to obtain test cases
{Bellman & Walter, 1988). Also at The Aerospace Cor-
poration, research is being conducted for establishing
criteria that define a rule base as a formai mathematical
structure and on algorithms that check the rule base
against the specified criteria (Landauer, 1989).

The recent literature stresses the complexity of the
knowledge base, the unexpected side effects caused by
interactions of rules, and the importance of rigorously
testing the knowledge base. However. in practice. these
aspects of testing knowledge-based systems are rarely
emphasized. For example. Harmon. Maus, and Mor-
rissey (1988) state. “‘one appealing feature of an expent
system is that its knowledge base is built incrementally.
Because of this. the knowledge base itself doesn’t need
a format test phase.”

Although the importance of verification, validation.
and testing of knowledge-based systems is gaining
prominence in the literature, rigorous VV&T methods
have not yet been put into practice. Currently, VV&T
presents a difficult challenge for the expert system
manager, developer, tester, and user in both the com-
mercial and government markets. This paper presents
the results of a survey of testing practices, reports and
analyzes current testing strategies, and discusses factors
which affect testing. Additionally, a comprehensive
approach to evaluation is described and general con-
clusions and lessons learned are presented.

2. THE STATE OF THE PRACTICE

During 1989. we conducted interviews with 30 mem-
bers or employees of the U.S. Army who had expernience
in developing and testing knowledge-based systems.
The individuals represented seven different organiza-
tions in the Army: Department of the Army, Army
Materiel Command. Army Research Institute, Defense
Logistics Agency, Training and Loctrine Command.
Forces Command. and Health Services Command.

VM Constantine and J W Ulviia

The interviews. performed in person or over the
telephone. were relatively open-ended. Generally, the
interviewees were asked to: provide a brief descniption
of the system. indicate whyv the svstem was considered
artificial intelligence (Al). provide information on how
the requirements for the system were specified. describe
the development environment, report on the use of
experts (single or multiple) in developing or tesung the
system. state how the sysiens was tested. and specity
what was perceived to be the greatest difficulty or tig-
gest stumbling block in development and testing.

2.1. Knowledge-Based Systems in the Army

At the time of the survey, knowledge-based systems in
the Army were moving from the research labs and into
the organizational areas. There were a large number
of prototype systems in the various organizations within
the U.S. Army; some were operational. few had been
fielded. and even fewer were building up a track record.
The large number of prototypes is not unusual. For
example, there are over 2000 expert systems in Japa-
nese industries and many of them remain as prototypes
(Terano & Kobayashi, 1989). The large number of
prototypes may be indicative of the relatively new po-
sition of knowledge-based systems outside the research
laboratories.

Movement of Al techniques from the research de-
partments was illustrated by the establishment of Al
centers. Organizations within the Army were estab-
lishing working groups committed to using Al tech-
niques to solve problems. improve productivity, and
lower costs. Organizations. such as the Defense Logis-
tics Agency and the Electronic Proving Ground. were
also providing in-house training on selecting valid Al
projects. use of shells, and knowledge engineering. The
Al centers usually mixed a number of small. short-
term Al projects with one large, longer-term project.
The success of a few small projects often paved the way
for a commitment from management to devote the
time and resources for a more costly, longer-term
project.

Knowledge-based system projects in the Army cov-
ered a diverse range of applications. many of which
were similar to commercial applications. Knowledge-
based systems had been applied to manv different tasks.
including hazardous matenal classification. selection
of appropriate contract clauses, in-house support for
medical research (human vaccine testing and immu-
nization scheduling), assignment of ratings for psychi-
atric disability compensation. battle management. and
diagnostics for helicopter repair. Many of the knowl-
edge-based systerns used information from a single or
multiple experts in a domain area and incorporated
information into the knowledge bases from othcial
doctrine or regulations. The systems ranged from a
number of small “in-house” aids that contained about
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50 rules to a very large system that had over 400 pro-
cedures, each containing its own set of rules. The sys-
tems were designed to run on a vanety of machines-—
personal computers, main frames, Sun workstations,
or Symbolics.

The systems were designed for use by both experts
and nonexperts. Typicaily both experts and nonexperts
interfaced with the system in a similar manner (ap-
swertng a series of questions or making selections from
a menu), but the expert was able to use s or her
knowledge of the problem area. while the nonexpe:-
had to use other sources such as invoices, billing <tate-
ments, or patient summaries. The difference 1n end
users suggests that different aspects of the system should
be emphasized, depending on the end user. For ex-
ample, more emphasis may be needed on the interface.
stress testing, and the quality of the explanaticas wien
a system is designed for a nonexpert rather than an
expert, but such use-dependent tesiing was rarely cone.

Despite the diversity, the systems were 2l quiie s;m.
ilar in their goals and in the methodology used in de-
velopment. Most, but not all, of the systems performed
a support function where high dollar costs or loss of
life were not involved. Generally, the systems func-
tioned as aids to a person making a decision. rather
than as decision maker. Many of the systems were not
designed to outperform an expert, but to add consis-
tency to a process routinely performed by many in-
dividuals within an organization. Few expert systems
were designed as a tutorial for a nonexpert. One of the
systems designed to train new employees in an admin-
istrative task seemed to have limited capabilities.
Rather than teaching the nonexpert the skills necessary
10 become an expert, a user commented that the system
gave "1 year of experience 20 times."

Most of the systems were developed through rapid
prototyping. For the most part, requirements docu-
ments did not exist. Rather, the software either evolved
from an existing software program or was created in-
formally to meet a need of a particular individual or
department within the organizations. Typically the
systems were developed using expert system shells
(EXSYS. M-I, CLIPS, ist Class. Level5, ART) or in
LISP, which many developers saw as a rapid prototyp-
ing language. When a system became a ““final product,”
some developers saw a need to convert it to another
language, such as Ada or C. This conversion is a po-
tential problem—one that could be very expensive and
even infeasible. Furthermore. the conversion has im-
plications for testing, since much of the testing per-
formed on the original system will need to be repeated
on the ~onverted syseem

As stated earlier, most of these systems developed
as prototypes. However, in some cases there were plans
to canvert the prototype to an operational system. The
requirements documents for these systems generally
seemed 10 focus on system integration issues—such us
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access 1o large databases or converting to a different
shell, a different development language, or a different
hardware configuraton—and not on issues relating to
the expected pertormance ot the software. The lack of
documented requirements and the “fuzzyv™ nature of
a knowledge-based system add to the difhouhy of test-
ing it.

2.2. Testing Knowledge-Based Systems

tnasking » bt it took to 225t 7 knowledge bused system,

we reveived o orange of respoeases. Some respondenis

thought that tesung Al software was not any different
from testing conventional software (“a rule base is just

a structured database''): others believed that testing Al

software was very different and required a multifaceted

approach. (0 LICIIE stalic testing, dynamuc testing,
muitiattinbute ana‘ysiz. acceptance by experts and

(HESTIONNAITES 135 LSEL s,

Many of the Sudicalbe, faced 1o tennng anov lodge
based systems can be generalized:

® [ssues concerning testing were not '+ uised early enough
in the development process. Not only is it important
to detect errors early, it is also important to stant
planning how the system will be tested. According
to Bellman and Walter (1989), *pruparing for testing
begins with system design.” Building a testable
knowledge-based system is building a model and re-
quires specifying acceptable performance ranges up-
front and following a sound devejopment method-
ology. "‘Rapid prototyping is not an excuse for poor
plans and task analysis. quick fix or kludges™ (Bell-
man & Walter. 1989).

® [n aresource-constrained environment. 1t was difficult
to test thoroughly. The experiences of Science Ap-
plications International Corporation indicate that
V&YV and testing can consume as much as half the
project dollars and is usually one of the first areas to
get cut when budgets get tight (Miller. 1989}, Budget
constraints may necessitate cutting back or com-
pletely eliminating desirable software tests. For ex-
ample. it may not be feasible to bring tn an expert
who was not involved in developing the knowledge-
based svstem to help test it {Bachant. 1988).

o Often what the knowiedge-based svsiem should do
ways not clearly detimed or made explicit. which added
10 the difficulty of testing. The importance of docu-
menting requirements is clearly stated in most of the
literature. yet documented requirements rarely exist.
Culbert and Savely (1988) contend that “*without a
clear definition of what the system is supposed to
do, it is literally impossible to understand how to
test it Naser (1988), of the Electnic Power Research
Institute, states that “V&YV is hampered by the lack
of stable documentation™ and that a requirements
document should “provide external performance
goals that can be confirmed by tests,” Further re-
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TABLE 1
Testing Strategies
Charactenstics of
Testing Strategy Description Development Environment
PROTOTYPE FOREVER The expert receives the latest version of the + informat development
software and uses it in an actual work setting. environment
The expert monitors the system in use and s No documented
provides feedback on the intertace, the requirgments
explanation facility, and the reasonabieness of « Developed for in-house use
the system’s outputs over time. by a particular expert
« Deaveloper and expert user
have a ciose working
relationship
* System provides a support
tunction where cost of
efror is low
AGREEMENT As the system is being deveioped, it is tasted with ¢ Informal deveiopment
(The ultimate standard is the expert. When an initial version of the system environment
agreement between the is complete, a sampie of test cases is selected s No documented
system and a panet of based on actual data. The test cases are given raquirements
experts on a set of test 1o a panel of experts who are asked to * System deveioped for in-
casaes) determine the outcoms. The same set of test house use
cases is presented to the system and the system e Expertis not always the
determines the outcome. The system passes the intended user

COMPLIANCE

(The uitimate standard is
compliance with a format
specified by reguiations)

SATISFACTION

{The uitimate standard is the
satisfaction expressed by
the end user and/or expert)

CASE-DEPENDENT

(The finat assessment of how
well the system is doing is
dependent on agreement
with the expert using a
sample of test cases that
were also used in
development)

“tast’" if the system and panel of axperts agree
on the outcome for some percentage (85%, for
exampie) of the test cases. The system is put
into use and monitored over time.

Test cases selected based on actual data from a
pravious year where the outcome is known.
Those cases are presented to the system and
the appropriate changes are made. Another set
of test cases is selected from current data where
the outcome is not yet known. These cases are
presented to the system and the output is
correct if it complies with the relevant
regulations.

The daveloper examines the knowiedge base for
missing rules, rules that can be collapsed. and
rules that are not being fired. The expert
assesses the correctness of the rules, the gquality
of the explanations, and the quality of the
answers. The user assesses his or her ability to
interface with the system, the timeliness of the
response, the reasonableness of the outputs ana
explanations, and how the system fits in with the
operating environment.

The developer examines the knowledge base.
assesses the effect of adding rules, determines if
rules can be combined, and looks for errors. A
large sample of test cases is selected that
approximate the population of cases the system
will receive. The expert assesses the answer to
tast cases without using the system. Then, the
expert uses the system to obtain outputs (all of
the expert’s actions are saved). The saver Jata
reflacting the expert’s actions are anafyzed and
changes are made {0 the knowiedge basa. it is

System serves as an aid to
a decision maker rather
than as a decision maker

Informal development
environment

No documented
requirements

System designed to meet
an in-house need

Rules in the knowledge
base are based on
regulations

System performs a support
function and is designed
to add consistency to an
auisting inconsistent
process

Relatively informal
development environment

No documented
requirements

Developer and user have a
relatively distant
relationship

System designed to
function as an aid to the
decision maker

No documented
requirements

Relatively informal
development environment

Expert is available for
development and testing

The system is designed
primaniy to add
consistency to an
existing process
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Testing Strategy

Description

Characteristics of
Deveiopment Environment

ORGANIZATIONAL TESTING

(The uitimate goal is to have
the system—a training
system—improve
performance in an
organizational setting)

FIELD TESTING

(The ultimate standard is to
assess whether the system
actually reduces time and
cost of the existing process
in the field)

MULTI-FACETED
(The ultimate goal is to test all
aspects of the system)

necessary for the expert and system to agree
80% of the time. The system is then tested with
the intended users (who are not experts). The
nonexperts interpret the input data from
summary sheets and the differences in data
input between the expert and nonexpert are
examined and appraprizte changes are made to
the system.

The interface is iteratively evaluated by uilimate
end user. interface evaluation includes an
assessment of screen design, feedback
message placement, scrolling, features, menu
naming. design and actions. The system s
evaluated in a classroom setting by observing
the system in use and administering
questionnaires. Observers videotape and take
notes to assess how both students and
instructors use the system in an actual
classroom setting. Questionnaires are
administered to both students and instructors to
gather information regarding features used,
perceived usefulness, perceived problems, and
general feelings. An experiment, using subjects
in an actual classtoom environment, is designed
to assess the effect of using the system on
student performarnce.

Each prototype is tested with past cases from
saved actual data. Test in a similar operational
environment for 3 months and obtain feedback
on system effectiveness and user interface.
Appropriate changes are made to the system.
The system is then run in parallel to the existing
process in the intended operational environment
for approximately one year. During the paraliel
test, assessments are made as to how well the
system is meeting the goals stated in the
requirements document.

Developer performs comprehensive static analysis
of the knowledge base using automated tools.
Dynamic testing is performed to test the system

with an expert using a comprehensive set of test

cases not used in development. Muitiattribute
analysis is used to obtain subjective measures
for system performance. System is tested with
"‘developer’” experts as well as outside experts.
Questionnaires are administered to both
developer experts and outside experts.

¢ Research-oriented
development environment

e Careful, planned
deveiopment

* Sophisticated system
designed as an intethgent
training aid in &
classroom setting

* Requirements document

¢ System developed by
outside contractor

* More formal development
environment

+ System designed to reduce
time and cost of an
existing process

Formal development
environment

Documented requirements

Documented test plan

* Specially developed tools

tfor static analysis

scarch sponsored by the Llectrnie Power Rescarch In-

expectittons,  The requirements document should

stitute inaicates that there may he as many as five
different groups interested an the system's wvyveiall
quality—the development team, the sponsors. the
users, the experts used in development. and the mar-
ket experts or critics. The different groups may all
have different interests and different prrformance

provide the cntena used in the V&V provess and
serve as an agreement between the different groups
by explicitly stating the performance requirements
(Kirk & Murray. 1988). Rushby (1988} suggests that.
while it may be too difficult to explicitly define what
the system should do up front. it may be entirely
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possible to ““specify certain undesired or safety prop-
erties quite sharply.” This suggests that the require-
ments document should define the “minimum com-
petency requirements” and tests should be performed
to ensure. that at the very teast, the system conforms
to these criteria.

& The complexity of the knowledge base and the lack
of tools for static analysis were problems. Although
static analysis tools are discussed in detail in the lit-
erature, few testers have access 1o such tools. Most
shells do not provide extensive utilities for static
analysis and most developers do not have sufficient
time or resources for an extensive manual analysis
of the knowiedge base. One exception is CRSV (Cross
Reference Style and Verification Tool) which has re-
cently been made available and is distributed with
CLIPS.

e The unavailability of the expert for testing was a
problem. Many respondents commented that, al-
though they expected the experts to be available to
test the software, they were not. Generally, if the
experts were unable to test the system. the project
failed.

2.3. Determinants of Testing

Generally, the level of testing performed on knowledge-
based systems seemed 1o depend on four factors: in-
formation available on testing methods and procedures,
time constraints, resource constraints, and character-
istics of the development environment (such as for-
mality and accessibility of the developers to the users).
Typically, when the developer and user had a close
working relationship, the system was put into use and
the developer worked with the user to implement the
required software changes on an “as-needed” basis.

Some of the strategies used to test knowledge-based
systems along with corresponding charactenstics of the
development environment are listed in Table 1. At
some level, all of the testing strategies addressed cor-
rectness of the answer and correctness of the reasoning.
All of the systems were judged against some standard.
although in many cases that standard was simply a
vague notion of “‘correctness.” For example, in the
agreement-testing strategy. the system’s output was
stamped “‘correct” if it agreed with the outcomes spec-
ified by a panel of experts for 85% of the test cases. In
case-dependent testing, great care was taken to select
a set of test cases that approximated the kinds of cases
the system would be expected to handle in an opera-
tional environment, but ali of the cases used in testing
were also used in development. With the field testing
strategy, the system was judged ‘“‘correct” if it met a
few performance criteria (such as a 30% reduction in
downtime) specified in a requirements document,

In one particular project—an intetligent tutonng

M M Constantine and J. W Ulvida

system—testing atinbutes such as correctness of the
outcome was not as important as testing other attributes
such as the correctness and clarity of the reasoning,
the usability of the system. and how well the system
fit into the intended operational environment. Testing
included using the system in an actual classroom set-
ting, videotaping the system in use, and taking extensive
notes while observing the svstem in use. Both the stu-
dcnts and instructors were administered questionnaires
designed to assess features used, perceived usetulness.
perceived problems, and general feelings about the sys-
tem. Additionally, an experiment using a control group
and a test group of students was conducted to deter-
mine whether or not the system actually improved stu-
dent performance. Generally, the other testing strate-
gies did not sufficiently address either usability or fit
with the organization.

Many of the testing strategies (prototype forever.
agreement, compliance) did not directly address either
the structure or content of the knowledge base. The
satisfaction and case-dependent strategies insufficiently
addressed testing the knowledge base due to the lack
of automated tools for static analysis. Most of the de-
velopers realized the importance of structural or static
testing, but without automated tools, lacked the re-
sources or time to do as much testing as they would
have liked. Only the multifaceted testing strategy used
an automated static analysis tool especially adapted
for the particular application.

Most of the knowledge-based systems made use of
one of the many expert system shells available on the
market, and no testing was aimed specifically at the
inference engine of the shell. Most developers assumed
that, when they purchased a shell. the inference engine
had already been tested thoroughly. This may not be
the case. The literature indicates that perhaps only one
inference engine, CLIPS, has been formally validated
(Culbert & Savely, 1988).

The testing strategy of changing inputs. obtaining
outputs, and asking the expert if the results are rea-
sonable may be appropniate for small. expendabie,
nonautonomous, noncritical, in-house systems (where
the cost of an error and the cost of the system are ex-
tremely low), in environments where the developer and
the expert work closely together and the performance
of the system is continually monitored. But be pre-
pared: this system is likely to remain a prototype for-
ever. When a knowledge-based system is 1o be used by
a large number of individuals, to replace an existing
method for solving a particular problem. or to pertorm
an important or critical function or where the cost of
a system error may be high. more ngorous and thor-
ough testing is necessary. One approach for more com-
prehensive test and evaluation may be the muitiattn-
bute framework recommended by Adelman and Ulvila
(in press).
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24. MAU Approach to Evaluating a
Knowledge-Based System

Adeiman and Ulvila (in press) describe an evaluation

hierarchy that encompasses the following kinds of tests: .

o Service Tests. Service tests address the design and

portability of the computer system, computer usage, .

and system integration issues.

o Structural Tests of the Knowledge Base. Static or
structural testing is concerned with examining the
underlying structure of the knowledge base. that is.
the logical consistency and logical and functional
completeness of the rules. Tests for logical consis-
tency are aimed at finding and correcting redundant
rules. subsumed rules. conflicting rules, and unnec-
essary if conditions. Tests for logical completeness
are for finding unreferenced attribute values, illegal

attribute values, unreachable conclusions, and dead .

ends in the knowledge base. Functional completeness
measures the extent to which the knowledge base
addresses all the domain problems that the users have
to or need to address.

o Content-Specific Tests for the Knowledge Base. In

this type of testing, the domain expert is asked to
make judgments about the accuracy and adequacy
of the embedded knowledge. The judgments may be
elicited individually with single experts or using
group techniques with multiple experts. In this cat-
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the accuracy of the facts in the knowledge base. the
accuracy of the embedded rules, the acceptability of
the knowledge representation scheme, the adequacy
of the source, and the modifiability of the knowledge
base.

Inference Engine. Specific tests are aimed 2t deter-
mining the correctness of the inference engine.
Performance Tests. Performance tests are aimed at
determining huw well the system camies out its des-
ignated functions. These tests can be divided into
functions for which “ground truth™ answers exist and
those for which no ground truth exists, Where ground
truth exists, the performance of the system can be
compared with a known standard. Where no ground
truth exists, we must rely on the judgment of experts
to assess the quality of the conclusion. Performance
measures should also include ineasures of response
time and time to accomplish the task.

Usability Tests Usability measures incorporate a
number of factors that relate to how well the com-
puter is adapted to the needs of the user. Usability
measures can be assessed by observation or opinion
survey. Measures of usability that can be observed
are the extent of use, manner of use. and features
used. Usability measures assessed by opinion survey
include confidence in the system, ease of use, ac-
ceptability of the interface, acceptability of the results,
scope of the application, adequacy and clarity of the
explanations, and impact on the organization,

egory of tests, the domain expert is asked to assess  The characteristics or attributes described above were
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FIGURE 1. A MAUA Framewnrk for integrating test and evaluation criteris.
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TABLE 2
Testing Attributes and Definitions
Higher-Level
Attribute Attribute Definition
KB STRUCTURE
Logical Redundant Rules individual rules or groups of rules that essentially have the same
Consistency conditions and conciusions. Redundancy can ba due to
duplicate rules or the creation of equivalent ruies (rule Qroups)
Dy worcing variations in the names given to variabies, or the
order in which they are processed.

Subsumed Rules When one rule’s (or group of rules’) meaning is already
expressed in another rule (or group of rules) that reaches the
same conclusion from similar but less restrictive conditions.

Contiicting Rules Rules (or groups of rules) that use the same (or very simiar)
conditions, but resuilt in different conclusions, or rules whose
combination violates principles of logic (e.g., transitivity).

Circular Rules Rules that lead one back to an initial (or intermediate)
condition(s) instead of a conclusion.

Unnecessary if Conditions The value on a condition does not affect the conclusions of any
rule.

Logical Unreferenced Attribute Values on a condition that are not defined: consequently their
Completeness Values occurrence cannot result in a conclusion.

lliegal Attribute Vaiues Values on a condition that are outside the acceptable set or
range of values for that condition.

Unreachable Conclusion A conclusion that cannot be triggered by the rules combining
conditions.

Dead Ends Rules that do not connect input conditions with output
conclusions.

Functionai All Desired Inputs The knowledge base can handie all input conditions that need
Completeness to be addressed.
Application/Conclusion The knowledge base can trigger ail output conclusions that
Completely Covered need to be addressed.
Identified Knowledge The rules in the knowledge base can tali the user if input
Limitations conditions currently being processed cannot be addressed.
Analogously, if the expert system is such that a user can
specify a conclusion in order to identify the input conditions
that would generate it, an expert system that was
knowiedgeable of its limitations would tell users if a
conglusion currently being processed as input could not be
addressed.
KB CONTENT
Accuracy & Accuracy of Facts The quality of the unconditional statements in the knowledge
Adequacy base.

Accuracy of Rules The quality of the conditional statements in the knowledge base
representing expert judgment.

Knowledge Representation ~ Whether or not the scheme for representing knowledge 1s

Acceptability acceptable to other (a) domain experts and (b) knowledge
engineers.

Adequacy of Source Quality of the persons or documentation used to create the
knowledge base.

Modifiability of Knowiedge The extent to which the knowledge base can be changed.

Base

—Control Over The extent to which changes in the knowledge base are limited
to certain classes of users.

—Expandability {by The extent to which the knowledge base can be increased (or

human/machine) decreased) by users {(or their representatives) or by the
knowledge base (i.e., the machine) itself through learning.
SERVICE

Computer System  Design The extent to which the expert system runs on the approved
computer hardware and operating system and utiizes the
preferred compiement of equipment and features. In some
cases, the original system requirements may specify or
describe the preterred or required system. In other cases, the
tester may need to survey available equipment at the
intended installation.

Portability The ease with which the expert system can be transferred to

other computer systems.
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5

Definition

The amount of time required for the computer operator 1o
locate and load the program (if any) and the time to activate
the program. Set-up time should be measured in th.
expected operating envircnment (i.e., how the program will
actually be implemented).

The arnount of time required to run the program with a realistic
set of input data. This factor reters only to the time that the
CLLpALET Lrogramm: :akes 0 run: the time needed for the
Programmer ard Loer i€ nciudeg uncer dynamis testing

The amount &f RAN and a:3~ space required by the program.
Percentage of time the computer system could be expected to

The computer system's total amount of RAM and disk space.
The extent (2 wh'ch moving from vanous parts of the prograr

How well the program ‘a) vz 3¢ Aata and anglyges apd My}
permits continuation at or 20 unexpected proaram or system:

The extent to which the program (a) prohibits a program crash,
and {b) tells the user what to do after an input mistake.

The extent to which the program uses input and output formats
that are consistent with the intended use. This includes any
mandated or standard formats that are specific to the
intended 11ser organization.

The extent to which the program's data requirements are
consistent in content, quantity, quality, and timetiness with
those available to the intended user organization. The
program should also be able to interact with specified and
appropriate databases and communications systems.

The adequacy of material regarding the program's use and
maintenance. User's manuals should be complete and
understandable. Copies of computer code and its supporting
documentation should be complete and understandabie, and
should allow maintenance by the organization. (All applicable
software documentation standards should be met.)

The extent to which the program can be operated by
appropriately skilled individuals. The appropriate skill
requirement includes job description, users' technical
background, and training requirements. The appropriate level
may be specitied in requirements or may be determined by
reference to the organizational setting of its intended use and
to the personnel assigned to that setting.

TABLL Vv ey
Higher-Level
Attribute Attribute
Computer Usage Set-Up Time
Run Time
facters
Space Requirements
Reliability {(Hardware)
be operating effectively.
Capability {Hardware)
Effect of Feature Use/
Jumping Causes errors.
Degradation (Graceful?)
crash or nower outage.
Handling input Errors
System Formats
Integration
Data Requirements
Documentation
Skilt Requirements
PERFORMANCE

Ground Truth

Judgment

Qbservable

Speed
Accuracy (d")

Bias (B*)

Speed: Response Time

Speed: Time to
Accomplish Task

Quality: Quality of
ALswnrs

Quality' Quaiity of
Reasons

Extent of Use

The amount of time it takes a user working with the expert
system to solve representative problem scenarios.

The degree of overiap in the distributions of belief values when
the hypothesis is true versus false (see Lehner, 1989).

The difference in the proportion of false negatives (hypothesis is
true but system says false) to faise positives (hypothesis is
false, but system says it's true) (see Lehner, 1989).

The judgments of users regarding the adequacy of the amount
of time the expert system takes to react to user inputs.

The judgments of users regarding the adequacy of the amount
of time required to perform the task when using the expert
system.

The judgments of users and experts regarding the system's
capability.

The judgments of users and experts regarding the adequacy of
the system’s justification for its answers.

How much users employ the expert system to perform the task
{(e.g., the proportion of the time that the system was used for
task accomplishment)
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TABLE 2 (ctd )

Higher-Level
Attribute Attribute Definition
Manner of Use The way in which users employ the system and its features,
including (1) the procedures to access different modules, (2)
the way that intermediate and final outputs are incorporated
into the user's results, and (3) the use of man-machine
interfaces.
Features Used The extent to which different aspects of the expert system are
employed by users.
Opinions Confidence How confident users feel in taking actions based on working
with the expert system.
Ease of Use How easy users judge the system is to use after they have
completed training and become famiiiar with the system.
Acceptability of the The extent to which users assess that they and the system are
Person/Machine performing the tasks/activities for which they are best suited.
Interaction Process
Acceptability of the The users’ judgments regarding the adequacy of the system's
Resuits capability.
Acceptability of The users’ judgments regarding the adequacy of the system's
Representation Scheme way of presenting knowledge.
Scope Scope of Application The users’ judgments regarding the adequacy of the expert
system in addressing domain problems.
Explanations Adequacy of Presentation/  The users’ judgments regarding the acceptability of the
Trace system'’s presentation of its reasoning process.
Transparency of Expert The extent to which the system’s reasoning process s clear
System and understandable to its users.
Organizational fmpact on Work Style/ The judgments of users regarding the impact of the expert
impact Workload, Skills & system on (a) how they do their job, ot {b) the skills and
Training training required to perform it effectively.
Impact on Organizational The judgments of users regarding the impact of the expert
Procedures & Structure system on the organization's operations.
input-QOutput The users’ judgments regarding the adequacy ot all the expert

system’s displays except those tracing the reasoning
process.

put into a muitiattribute utility (MAU) model for eval-
vating a knowledge-based system (Ulvila. Lehner.
Bresnick, Chinnis. & Gumula. 1987). Multiattribute
analysis provides an overall framework for evaluation
of a system where multiple objectives are important.
MAU provides a formal structure for conceptualizing
measures of effectiveness (attributes). a mechanism for
decomposing global measures into component dimen-
sions and for reintegrating them to :ield a summary
measure of value. Adelman and Donnell (1986) present
a case study where multiattribute analysis was suc-
cessfully used to evaluate an expert system prototype.
In the study. Adelman and Donnell conclude that the
MAU framework evaluated the expert system rigor-
ously and allowed for empirical data to be collected
that could be used to improve the design, development.
and implementation of decision support software.
When applying MAU to the evaluation of an expert
system, the system is conceptually decomposed into
attributes that can be defined well enough so that mea-
sures of how well the expert system performs on each
attribute can be obtained. The attributes can be as-
signed different weights to assess their reiative impor-

tance to each other as well as their relative importance
at the vartous stages in the system’s life cycle. The MAU
evaluation hierarchy is displayed in Figure 1. The eval-
uation hierarchy encompasses both venhcation and
validation. In this MAU framework venfication in-
cludes alt attributes falling under “Knowledge Base.”
“Service.” and “Inference Engine.” whiie validation
includes “*Performance™ and “Usabilitv.” The defini-
tions for each attribute are presented in Table 2.

3. LESSONS LEARNED

Most of the lessons from the U.S. Army’s expenence
in testing knowledge-based systems are applicable to
all expert systems development. Generally. the lessons
relate to requirements and issues that were not raised
carly enough in the development process. Emphasis
was generally placed on developing a product that couid
be seen. touched, and operated. As a consegquence.
documentation and testing were otten “crowded out.”
The list below summarizes some of the lessons learned
and makes some suggestions for developing testable
knowledge-based systems.
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DEVELOPERS USERY EXPERTS SPONSORS

Nl 1/

PANEL

| o |

IDENTIFY THE PROBLEM =~ ————

IDENTIFY THE END USERS.
DEFINE THEIR ROLE IN
DEVELOPMEN] & TESTING

IDENTIFY THE EXPERYS ASSESS
THEIR AVARABRLITY
DEFINE THEIR ROLE IN
OEVELOPMENT & TESTING

CHARACTERIZE THE TYPES OF
PROBLEMS THE SYSBTEM SHOULD
HANDLE & THE TYPES IT CAN'T

1IDENTIFY RANGE OF INPUTS &
EAPELTED QUTPUTS

|

10EM 7Y SOURKE ol Thai CASED.
WAL THE EXPERTS DE NEEDED? DO
ACTUAL DATA EXIST? With A
SIMULATION BE REQUIRED? WITHHOLD
A SAMPLE OF TEST CASES FROM
DEVELOPMENT (TO BE USED IN
TESTING)

PRIORITIZE PERFORMANCE e IDENTIFY cvﬂL«A YO JUDGE

CRITERIA. RECOGNIZE THAT IT SYSTEM PERFORMANCE
MAY BE NECESSARY TO MAKE
TRADEOFFS; MORE ON ONE
CRITERION MAY MEAN LESS ON DEFINE MW COMPETENCY
ANCTHER CRITERION. MAU REQUAIEMENTS FOR PERFORMANCE
MODEL MAY BE USERU, RITERA

cl
DEFINE GOALS FL PERFORMANCE
CRITERIA

ESTABLISH INTERMEDIATE PRODUCTS
ALONG DEVELOPMENT PATH & WHICH
ATTRBUTES (€.G. . FROM MAU
EVALUATION HIERARCHY IN FIGURE 1)
SHOULD BE EMPHASIZED FOR TESTING

1F THE SYSTEM WERE IN

PLACE TODAY. HOW WOULD

IT BE USED?

DRAW/OUTE NE THL
EXISTING PROCEDURE OR
METHOD 08 SOLVING THE
PROBLEM

IDENTIFY T{(E DIFFICULT
AREAS, TIME-CONSUMING
AREAS, OR BOTTLENECKS IN
THE EXISTING PROCESS

IDENTIFY V\&E ROUTINE OR
BASY ASPECTS OF THE
PROBLEM

WNITIALL ¢ SELECT ONE
DIFFICULT AREA & SEVERAL
EASY OR ROUTNE AREAS

EXAMINE ALTERNATIVE
SOLUTIONS. DETEFMINE IF
BENEFITS OF PURSUING AN A
APPROACH OUTWEIGH COSTS,

couder s

APPROPRIATE TOUSE A
SHELL

FIGURE 2. Requirements generation process.
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1. Specify system requirements. 1t is impossible to test
the system without a clear understanding of what
the system should do. If it is too difficult to do up
front, do it later. Develop a prototype and recognize
it for what it is—a means to generate requircments.
Figure 2 displays an outline for a possible require-
ments generation process.

2. Give the knowledge-based system an apprenticeship
period in the intended operating environment. Keep
a library of cases presented to the system, observe
the system in use, and monitor its performance. An
apprenticeship period may be essential for assessing
how the system will perform in an operational en-
vironment and for findine errors not found in pre-
vious testing efforts.

3. Instill order. Establish a set of products (tools, shells)
to use, provide training, and build your own tools
to support testing if the vendor wili not provide
them. Automated tools for static analysis arc es.on-

tial for thoroughly testing a knowledge base and
should be available to the developers of knowledge-
based systems. Since there are no industry standards
for knowledge-based systems, specify formats,
naming conventions, procedures for commenting
rules, and other programming standards for devel-
opers in a particular organization to use when
building knowledge bases and knowledge-based
systems.
To date, successful applications seem to be limited in
scape and solve relatively well-defined problems. Many
of those interviewed seemed 10 think that the future
of Al is in “little modules of Al as part of larger sys-
tems, rather than in large Al systems. Generally, pro-
totypes are regarded as usefu! and valuable for “‘study-
ing the problem™ but do not necessarily lead to oper-
ational systems. Prototyping may be nothing more than
one step on the way to defining system requirements.
To develop operational, usable, and testable systems.
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developers need to work harder at answenng the dif-
ficult questions up front. to deiine explicitly the scope
of the application, the input domain. the limitations
of the system. the expected level of performance. the
usability requirements. and o rigorously test those as-
pects of the sysiem. Without nigorous testing, a system
cannot be a reliable and useful contributor.
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for evaluiting the knowledge base of an expert system that out-
puts quantitative belief values. Statistical procedures can be
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A NOTE ON THE APPLICATION OF CLASSICAL STATISTICS
TO EVALUATING THE KNOWLEDGE BASE OF AN EXPERT SYSTEM

Paul E. Lehner and Jacob W. Ulvila

1.0 INTRODUCTION

In an earlier paper (Lehner, 1989), an empirical approach was
presented to evaluating the knowledge base of an expert system
that outputs quantitative belief values (e.g., probability,
Shaferian belief, fuzzy membership, certainty value, etc.). That
paper emphasized the use of a nonparametric statistical proce-
dures to characterize the extent to which each node in an in-
ference network (or other knowledge structure) distinguishes be-
tween true and false instances of each hypothesis tested at that
node. This paper extends the discussion in Lehner (1989) by
demonstrating how parametric procedures from classical statistics .
can be used in the same way. The justification for for using
these procedures is also discussed.

1.1 The Signal Detection Analogy

As noted in Lehner (1989) an expert system that evaluates
predefined hypotheses is loosely analagous to a signal detector,.
A signal detector is any system that functions to discriminate
occurrences from nonoccurrences of a signal. As shown in Figure
1, the signal detection problem is often characterized as one of
receiving a set of sample values (perceived signal strength) from
one of two distributions (signal exists vs. signal does not
exist), and on the basis of this information deciding from which
of the two distributions the signals were drawn. Usually this
decision is based on whether the observed signal strengths exceed
a threshold. The decision threshold is determined from back-
ground knowledge of the underlying distributions. The sen-
sitivity of a signal detector is often measured in terms of the
normalized difference between the means of the two distributions
(d’). If d’ is large (small), then the error rate of signal/no
signal decisions will be small (large).

In an expert system inference network (or other knowledge struc-
ture) each node represents two or more mutually exclusive
hypotheses. Most expert systems generate a belief value .

2
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(probability, certainty level, Shaferian belief, etc.) for each
hypothesis. Consider a node that discriminates two hypotheses,
Hy and H When Hl is true, we would generally expect the belief
value in H ’ bel(H ), to be higher than when H, is true. The
user’s problem is to use the belief values output by the expert
system, along with other avajilable information, to select a
hypothesis and act accordingly. If there is a large (small) dif-
ference between the mean bel(H,) value when H; vs. H is true,
then the expert system should %e useful (useless) in helping a
user to discriminate these two hypotheses.

1.2 Measures of the Usefulness of an Expert System

From a users perspective, an expert system is useful if it helps
discriminate instances when different hypotheses are true. One
approach to evaluating a system is to estimate the proportion of
times the expert system will generate advice that is useful in
discriminating among alternative hypotheses. 1In this section we
show how this can be done. 1In this section and in Section 2.0 we
will make several assumptions. Each assumptions will be dis-
cussed and/or relaxed in Section 3.0.

Assume an expert system that distinguishes between two ‘
hypotheses, H and ~H. Assume also that the expert system genera-

tes belief values that satisfy bel(H)=1l-bel(~H). (Call these as-
sumptions Al and A2 respectively.) Consider Figure 2, which con-
tains two distributions [or densities] P(bel (H) |H) and

P(bel(H) |~H). Two thresholds have been set, U and L. Depending

on how a user utilizes an expert systen, Figure 2 has two dif-

ferent interpretations.

First, the expert system may be utilized to partially automate
the inference process. That is, if the expert system outputs
very high (low) belief values then the user simply acts under the
assumption that H (~H) is true. In this context, U and L can be
interpreted as decision thresholids. If bel(H) is greater (less)
than U (L), then the user concludes H (~H). Otherwise the user
is uncertain (UNC), and proceeds to collect additional evidence.
Of course, complete automation occurs when U=L.

Alternatively, the user may view the expert system as a source of
evidence. That is, the user combines the expert system output
with other data and knowledge to make his or her own inferences.
In this context an important question to ask is "How often does
the expert sys>tem output strong evidence for the correct
conclusion?" One standard approach to measuring the strength or
diagnosticity of an item of evidence is by a likelihood ratio:




P(bel (H) |H)

T e a2t - -

P(bel (H) | ~H) .

If LR is high (e.g., greater than 10¢) then the report "bel (H)" is
strong evidence for H vs. ~H. IYf IR is low (e.g., less than .1)
then the report "bel(H)" is strong evidence for ~H.

The reason that LR is a standard measure of evidential value is
that most theories of rational induction (i.e., proper degrees of
belief) recommend the use of Bayes’ rule for updating (see Mor-
timer, 1988). This rule states that a persons relative degree of
belief in H vs. ~H, given a new piece of evidence E, should be
determined by

P(H|E) P(E|H) P (H)

——————— = ——r——-—rean K e o - ———

P(~H|E) P(E|~H) P(~H),
Posterior Odds = LR * Prior Odds.

U and L in Figure 2 can be interpreted as thresholds of strong
evidence. That is, if bel(H) is greater (less) than U (L) then
the expert system has output strong evidence for (against) H. If
bel (H) is between U and L, then that ocutput does not provide
strong evidence in either direction. That is, the user will need
to base his or her decision on other factors or be driven by
priors.

Consequently, whether the user chooses to utilize the expert sys-
tem to partially automate inference decisions or as a source of
evidence, Figure 2 provides a way of characterizing user/expert
system interactions.

Consider P(bel(H)|~H), the distribution of belief values when H
is false. Given U and L we can specify three probabilities:

P(bel (H) <L|~H) <=-- probability of true negative
P(U>bel (H)>L|~H) <-- probability of uncertain output
P(bel (H)>U|~H) <-- probability of false positive.

Similarly

P(bel (H) <L|H) <~-~- probability of missed positive
P(U>bel (H)>L|H) <~-- probability of uncertain output
P{(bel (H)>U|H) <-- prokakility of true positive.
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Define Py to be the probability that the expert system will gen-
erate befief values that strongly support the wrong conclusion
and P;; to be the probability that the expert system will generate
belief values that do not provide strong support for either con-
clusion. From the above six probabilities we know that

Pg

P(bel (H)<L|H)*P(H) + P(bel(H)>U|[~H)*(1~P(H)) {11
and
Py = P(U>bel (H)>L|H)*P(H) + P(U>bel (H)>L|~H)*(1-P(H)) (21

where P(H) is the probability (anticipated relative frequency) of
sampling from the H-true distribution.

Together Pp and Py are two aggregate measures of the usefulness
of an expert system. If Pp is relatively high, say .1, then the
expert system is generating outputs that strongly support the
wrong conclusion about 10% of the time. If Py is relatively
high, say .3, then the expert system is generating useless out-
puts approximately 30% of the time. From these two numbers we
know that 1-Py-Pp is a measure of the proportion of times the ex-
pert system will strongly support the correct conclusion.

2.0 UBING CLASSICAL STATISTICS

One of the objectives of evaluating an expert system is to assess
the extent to which that expert system can help a user to make
correct inferences. Although different users will set different
U and L thresholds, one can still ask whether it is possible to
set thresholds where Pp and Py are simultaneously low. If this
cannot be done, then tge expert system cannot be very useful in
as much as the user must either tolerate a high error rate or a
high rate of outputs in the uncertain region.

To estimate the extent to which Pp and Py can be simultaneously
low, it is useful to make several 51mp11¥y1ng assumption. They
are as follows.

A3) Given each hypothesis, the distributions of belief values
are normally distributed.

A4) The distributions of belief values have equal variance.
A5) The U and L thresholds are symmetric. This means that

P(bel (H)>U|~H) = P(bel(H)<L|H).




2.1 Estimating Pp and Py

Since the thresholds are symmetric and the two normal distribu-
tions have equal variance, it follows that Py and Py are now in-
dependent of the relative frequency of sampling from each dis-
tribution. Specifically,

i

Pg = P(bel(H)>U|~H) = P(bel (H)<L|H),

and

Py = P(U>bel(H)>L|~H) = P(U>bel (H)>L|H).

In addition, from these assumptions it follows that
(Ml-Mz)/S = Z(l-PE) + Z(I"PE_PU)' (3]

where M M,, s are the means and standard deviation of the two
dlstrlbutions, and z(X) is the z-score for X. From this it can
be seen that any procedure for estimating the means and standard
deviation of the two distributions will also provide an estimate
of Pp and Py.

Consequently one can specify a straightforward test procedure fo
evaluating an expert system that discriminates H and ~H. First,
identify two representative sources (H-true vs. H-false) of pos-
sible test problems. Randomly select problems from each source.
Run the expert system against each problem and do a t-test com-
parison of the results. The t-test analysis will output an es-
timate of the mean and standard deviation of each distribution,
an estimate of the difference between the means of the two dis-
tributions and a standard error of the estimate for this dif-
ference. From these three estimates, and Py can be estimated
by using equation [3]. An example of tﬁls is prov1ded in Section
2.3 below.

2.2 Using P and Py to Determine Sample Size

Although the above procedure is straightforward, we still need to
determine the number of test problems required. As it turns out,
the Pp and Py measures can be helpful in making this determina-
tion. A standard results from classical statistics (see Hays,
1973, p. 417-422) will be useful here. Namely

2z -z

[ (My-M,)/5]2




where N estimates the number of test problems per condition
needed to guarantee that if the difference between the two dis-
tributions is at least (M;-M,/s), then there is at least a 1-4
probability of obtaining signiiicance at tne « level in a one-
tailed t-test of the null hypothesis of no difference.

Using this equation we can determine a minimum sample size for
both groups by specifying the following parameters:

max Pp - a maximum acceptable error rate,
max Py - a maximum acceptable rate of ambiguous results,

o
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Given these numbers, the minimum sample size for each grcup is
derived as follows:

significance level for t-test
the power of the t-test.

[(2(1 - max Pg) + 2(1 - max Pg - max PU)]z.

If Pp + Py < max P + max Py, then the probability of obtaining a
statistically significant difference (at the « level) between the
two groups is > (1- x?). As will be illustrated below, using
this equation will often result in a minimum sample size that is
very small (around 5 tests for each hypothesis in a node).

2.3 An Example

Assume that we have been given the responsibility of testing an
expert system with the simple inference network shown in Figure
3. In this inference network there are three evidence itemns
(evidl, evid2 and evid3), one intermediate hypothesis (ihypl),
and one goal hypothesis (ghypl). Although the analysis does not
depend on how belief values are calculated, we note here that
bel(ihypl) is a linear function of bel(evid2) and bel(evid3), and
bel(ghypl) is calculated by performing a relative maximum entropy
update given new values for bel(evidl) and bel (ihypl).

our first task is to specify a minimum sample size. As
evaluators we make the following judgments

(1) An error rate greater than 5% is unacceptable. If the error
rate is larger than this, users will simply discard the sys-
tem.
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(2) The system should not generate ambiguous results more than
30% of the time. Beyond this level, using the system is
considered to be more trouble than its worth.
(3) Set A= .05. A level commonly used.
(4) Set (1 - B) = .90. If indeed the system satisfies (1) and
(2) above, then the probability of obtaining one-tailed
t-test significance at p<.05 is .9 or greater.
From these four judgments, we get

max Py = .30, max Pg = .05, & = .05, and (1 -48) = .9.
This gives us

2[z(1-X) - z(8) ]2 2(1.65 - (~1.28))%

[2(1~Pg) + z(1-Pg-Py) )2 [1.65 + .39]2
So the minimum sample size is approximately four test problems
per condition. Even though this seems like a small sample size,
if the difference between the two distributions is substantial
(i.e., difference between means sufficient to give P +Py<.35),
then there is a 90% chance that this small experimeng wi1ll gener-
ate a t-test result with p<.05. Consequently, it is unlikely

that the expert system, if it satisfies these criteria, will not
exhibit at least some difference between the two distributions.

We decide to be "conservative" and let N=8.
After running the 16 randomly selected tests we get the results
shown in Table 1. A standard t-test applied to ghypl indicates a
statistically significant difference between the two sample dis-
tributions (p<.00005). Clearly the expert system has achieved
some discrimination between H and ~H.
In addition, we estimate a minimum value for Py by

z(1-max Pg) + z(l-max Pp-est[Py]) = est[(M;-M,)/s].

The observed mean difference is .119, and the estimate of the
standard deviation of the distributions is .044. This give us

2(.95) + z(.95-est(Pyl) = est[Ml-Mz)/s]
1.65 + z(.95-est[Py]) = .119/.044

1.05

[}

z(.95-est(Pyl)
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.95~est{Py;] = .85
est[Py] = .1
TABLE 1
SAMPLE TEST RESULTS

Group Output Belief Values

(gypl-true = 1) evidl evid2 evids ihyp1 ghypl
0 .4 .56 .61 .59 .39
0 .4 .43 .28 .36 .33
0 .33 .78 .29 <54 .36
0 .26 .23 .33 .28 .28
0 .48 .26 .32 «29 .34
0 .24 .34 .36 .35 .29
0 .29 .54 .78 .66 .38
0 .48 .48 .34 «41 .37
1 .69 .21 .89 .55 .45
1 .8 .76 .56 .66 .5
1 -44 .89 .48 .69 .42
1 .61 .76 .94 «85 .5
1 .87 .55 .86 <71 .53
1 .59 .56 .4 .48 .41 .
1 .76 .48 .69 .59 .47
1 .68 .49 .23 <36 .4

Finally, a 90% cronfidence level for the minimum value of Py can
be estimated by (a) calculating the 90% confidence level for the
minimum mean difference and (b) repeating the above procedure.

In the case of ghypl, the observed difference was .119 and the
standard error of the estimate of the difference was .022. Con-
sequently, the 90% confidence level for difference is .119 -
.022*t (.9, df=14), which is .091. This gives us an "upper bound"
on Py of

1.65 + z(.95-est{Py]) = .090/.044

z(.95~est(Py]) = .40

.95-est [Py] .66
est[Py] = .29.
Thic procednre can be repeated for alternative levels of max Pg,

from which one can see the tradeoff between Pg and Py. This is
illustrated in Table 2.

12




TABLE 2
TRADEOFF BETWEEN P;; AND Pp IN SAMPLE PROBLEM

max P, | est Py
.1 -.02*
.05 .1
.025 .21
.01 .35
.005 .45
.001 .56

* indicates distributions are sufficiently separated
that a single threshold can be set where

P(bel(H)>L|~H) = P(bel(H)<U|H) < max Pgp

A similar analysis can be performed for all the nodes in the net-
work. The t-test results for each node in the sample problem are
summarized in Table 3. From this table we can draw several con-
clusions.

Overall, the expert system performs well. As far as the goal
node (H vs. ~H) is concerned, a user willing to tolerate a 5% er-
ror rate, should find the expert systems advice useful more than
70% of the time, and most likely around 90% of the time. These
results do support the evaluation hypothesis that Py<.3.

Regarding the other nodes in the network, it seems that most of
the discrimination is obtained from evidl, and that the other
nodes contribute relatively little to the overall accuracy of the
systenmn.

TABLE 3
TEST RESULTS FOR ALL NODES IN SAMPLE PROBLEM
(max Pp set at .05)

estimate estimate (max Pp = .05)

standard standard 90% C.L.
node My - M, deviation error est Py est Py
evidl .32 .116 . 058 .08 .28
evid2 .13% «197 .099 .78 .86
evid3 .218 .222 .111 .69 .86
ihypl .176 .147 .073 .63 .81
ghypl .119 .044 .022 .1 .29
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3.0 RECONBIDERING THE ASSBUMPTIONS
In Sections 1.0 and 2.0 several assumptions were made. They were
Al) The expert system only considers two hypotheses, H and ~H.
A2) The belief values sum to one.
A3) The distributions of belief values are normal.
A4) The distributions of belief values have equal variance.
A5) The thresholds are symmetric.

Each of these assumptions are discussed below. Assumption A3
will be considered last.

3.1 Multiple Hypotheses

If there are just two hypotheses (H and ~H), with belief values

that sum to one (A2), then bel(H) completely summarizes both

values. When there are more than two hypotheses, this is no

longer true. Given a belief value for one hypothesis, the belief ‘
values for the other hypotheses can still vary. The implies that

for each hypothesis, there is a multivariate distribution of

belief values. For instance, if the expert system discriminates
three hypotheses H,, H, and H3; then the output can be charac-
terized as a vector of belief values

b = <bel (H;),bel(H;) ,bel (H;)>.

There are two ways to address the multiple hypothesis case. The
first is to perform a multivariate statistical analysis. The
thresholds then become hyperplanes in a vector space of possible
belief values. For instance, one might set thresholds U; where
for each H; the decision rule is to select H; if bel(H;)>U;. The
area defined by bel(H;j)<U; for all i would tﬁen be the uncertain
region. Py is the probability of falling in the uncertain
region, while P; is the probability that for some i, bel(H;)>U;
occurs when H; is false. Conceivably one could generalize the
evaluation procedure described in Section 2.0 to address this
multivariate problem. We have not explored the details of this
generalization.

An alternative approach is to do a pairwise comparison of
hypotheses. This can proceed as follows. First define a
neasure, belj4, that summarizes the relative belief values of the
two hypotheseg. For example we could set
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bel:

i = bel(Hj)/[bel (H;)+bel (H)],

or possibly
belij = [bel(Hi)-bel(Hj)).

Second, determine the minimum sample size required for each pair-
wise comparison. Third, select a sample size for each H; that is
greater than the maximum of the ainimum sample sizes required for
each pair comparison involving H;. Finally, collect the test
data and compare each pair of hypotheses as discussed in Section
2.0.

3.2 Beli values do t one.

Many expert systems employ an uncertainty calculus where belief
values do not sum to one or where a range of possible values is
maintained for each hypothesis. For example, in a Shaferian sys-
tem of beliefs (Shafer, 1976), bel(H) is often interpreted as the
degree to which the existing evidence supports H; where it often
occurs that bel (H)+bel (~H)<1.

Conceptually this case is similar to the multiple hypothesis
case. For each hypothesis, there is a multivariate distribution
of belief values. Consequently, the same techniques apply here.
In the case of Shaferian beliefs, for instance, it seems natural
that for each pair of hypotheses H; and Hs;, (bel(H;) bel(Hj)]
effectively summarizes the extent %o whicﬂ the expert system
finds evidence that supports Hy vs. Hj

3.3 Unegual Variance

Assumptions A4, that the two distributions have equal variance,
is not essential. The main implication of violating this assump~
tions is that Py, but not Pg, now depends on the relative fre-
quency of sampling from the two distributions. This can be seen
from equations [1] and [2].

If assumption A4 is not made, then the procedure described in
Section 2.0 needs to be modified to (1) estimate the variance of
each distribution of belief values separately, and (2) incor-
porate an estimate of the relative frequency of sampling from
each distribution. As long as the thresholds are symmetric, Pp
is unaffected by unequal variances. However, Py will vary; al-
though its value is bounded by P(U>bel;:>L|H;) and

P(U>bel j>L,H ), where II; and Hy are tﬁg two hypotheses being
compareé conservatlve“ estzmate for (2) is one that pushes
the value for Py close to its maximum value.
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3.4 Nonsymmetric Thresholds

Assumption A5, like A4, is not essential. If A5 is violated,
then both P and Pp will depend on the relative frequency of sam-
pling from ghe two dlstrlbutions. Consequently, if this assump-
tion is violated then the procedure in Section 2.0 must be
modified to incorporate a subjective estimate of the relative
frequency of sampling from each distribution. Note again that Py
is bounded by P(U.-bel >L|H ) and P(U>bel >L|H , while Pg is
bounded by P(belj <L|ﬁ ) ané P(bel;;>U|H } Rsequently, a
"conservative" esllmate of the rela ive requency of sampling
from the H-~true distribution is an estimate that pushes Py+Pgp
towards its maximum value.

3.5 Distributions that are not Normal

Assumption A3 is expedient. Although normal distributions are
prevalent in nature, there is no guarantee that belief values are
always distributed normally. Furthermore, there are procedures

for testing the hypothesis that a collection of sample points was
generated from a normal distribution. When the test data sug-

gests that the distribution is not normal, then one should con-
sider alternative procedures. .

It should be noted, however, that testing an expert system is of-
ten an expensive proposition. As a result, the sample size for
each distribution is often small (less than ten). Given a small
sample size, it is unlikely that a sample distribution will lead
to rejecting the assumption of normality, even when the true dis-
tribution is not normal. When the normality assumption is incor-
rect, we are unlikely to detect it.

This leaves us with a quandary -~ routinely use weaker procedures
that make fewer assumptions (viz., nonparametric statistics), or
simply assume normality and accept the occasional errors in
evaluation that this assumption will entail. In our estimation,
for small samples nonparametric procedures (e.g., Lehner, 1989)
are too weak to be of much use. Consequently, we recommend the
second option.

4.0 Summary and Discussion

In this paper we have examined the use of classical statistical
procedures for evaluating the knowledge base of an expert system.
Statistical procedures can be used to estimate the relative fre-
quency that an expert system will output belief values that (a)
strongly support an incorrect hypothesis, and (b) do not provide
strong support for any hypothesis. These procedures can also be '
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used to estimate the minimum number of test problems required to
evaluate an expert system. As it turns out, the required number
of test problems per hypothesis is often less than ten.

4.1 Comparison to Jther Measures

Other approaches have been picposed to evaluating belief values.
As discussed in Levi (1989), for 2xample, probability scoring
rules are commonly used to assess the accuracy of probabilistic
judgments. The most commonly used scoring rule, initially
proposed by Brier (1950), is the mean probability score (MPS).
The MPS is simply the average squared error of predictions vs.
outcomes. For example, suppose that on three consecutive days a
weather forecaster predicts a 20%, 60% and &0% chance of rain.
In fact, it rained only on the third day. Then

MPS = [(.2-0)2+(.6~0)%+(.8-1)2]/3 = .147.

our approach differs from the use of probability scoring rules in
two ways. First, we have focused on measures that have a
"behavioral" interpretation. Py and Pp tell us something about
how a user can use an expert system. En contrast, the behavioral
implications of "MPS=.147" are unclear. Second, probability
scoring rules measure the deviation of outcomes from the absolute
belief values. This presupposes that the belief values are prob-
ability estimates. Furthermore, it may fail to measure dis-
crimination. Note, for instance, that in Table 1 bel(ghypl) is
almost always less than .5, even when ghypl is true. Conse-
quently, the MPS score for this expert system would be very low,
even though the expert system effectively discriminates when
ghypl is true vs. false.

An alternative approach is to estimate the expected cost of in-
correct diagnoses (e.qg., Levi, 1985; Kalagnanam and Henrion,
1988, Heckerman, 1987). However, this requires that the
evaluator (a) set one or more specific thresholds, (b) estimate
the cost of different types of errors, and (c) assume the user
has no other source of information on the inference problem (else
(see Lehner, et.al., 1989) combined user/expert system combina-
tion may have a very different pattern of errors than inferences
based on the expert system alone). The approach presented in
this paper. while similar in spirit, requires fewer assumptions
and judgments.

A third approach involves the use of a linear regression analysis
to identify any linear relationships between the cues (evidence
items) and (a) human expert judgments and (b} the correct diag-
rosis (see Levi, 1989 for discussion). The argument here is that
an expert system is useful only if both (a) and (b) reveal a
large nonlinear component, and that expert judgments effectively

17




predict the nonlinearity between the cues and correct diagnosis.
If these conditions are not met, then a complex expert system
could be replaced by a much simpler linear model. There is no
"added value" in building an expert system. Although this added
value approach clearly has merit, the approach presented in this
paper addresses an orthogonal issue. Our performance measures do
not compare expert system judgments with those of a human expert.

The same is true for other attempts to use statistical tests
(e.g., paired t-tests) to compare expert system and human expert
judgments (0’Keefe, et.al, 1987). oOur comparison is not to human
experts, but to "ground truth." Note, however, that this doces
not mean that "ground truth" cannot be determined by human ex-
perts. 1Indeed, human experts are often required to determine the
correct or best answer. However, this determination is usually
made post hoc and is based on a great deal of information not
available to the decision maker during problem solving.

4.2 Other Statistical Procedures

One final comment. In this paper we have focused only on using
commonly used procedures from classical statistics. This was
done because most people interested in expert system evaluation
have some knowledge of these procedures. However, it is impor-
tant to note that the Pj; and Pp measures do not presuppose these
procedures. For instance, recent developments in classical
statistics (Efron, 1982) might suggest the use of alternative
procedures that would result in a smaller confidence interval
around the difference between the means; resulting in smaller
confidence level estimates for Py. Similarly, procedures from
Fayesian statistics could also be used to estimate these measures
(e.g., Winkler, 1972). Bayesian procedures would also result in
smaller intervals, since they would exploit the prior knowledge
that the difference between means is unlikely to be negative. We
are presently exploring the potential advantages of using alter-
native procedures.
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Introduction

During the last few months we have been conducting interviews with people in
the Army in the Washington D.C. area who have some experience in developing and
testing systems that employ artificial intelligence (particularly expert or
knowledge-based systems). The purpose of these interviews is to develop a com-
pendium of "lessons learned"” in the areas of developing and testing knowledge-
based systems. These efforts are part of the second phase of a Small Business

Innovative Research Project sponsored by U.S. Army Electronic Proving Ground.

The objective of the first phase of the project (September 1986 to March 1987)
was to develop methods for testing and test evaluation that are appropriate

for C3

1 systems that employ AI. The goal of Phase II is to develop and
demonstrate guidance to aid in the testing of systems that employ AI. This
paper supports this goal by surveying and sharing the lessons learned by

people in the Army who are developing and testing knowledge-based systems, and

by recommending an approach to the testing and evaluation of expert systems.

Many organizations within the Army are involved with prototype systems; sone
are operational, a few will be fielded, and even fewer are building up a track
record. Thils paper dcscribes the state of the practice, shares the lessons

*To appear in Proceedings of IJCAI-89 " crksh.t o Verific utionm,
Validation and Testing of Knowledge-Bused System: . ©90.




learned, and offers some advice, based on the lessons learned, for developing .

and testing operational knowledge-based systems.

The State of the Practice

We began by interviewing Army managers a2nd developers in the Washington D.C.
area. The purpose of conducting the interviews was to collect and share the
experiences of managers, developers, and testers of knowledge-based systems,
and attempt to determine some recommendations for future developers and
testers on how to test knowledge-based systems. We are still relatively early
in the process of interviewing; the descriptions of Army systems and conclu-

sions drawn so far are based on a sample of Interviews.

The interviews were relatively open-ended. The interviewees were asked to
provide the following information: a brief description of the system, why the.
system was considered AI, information on how the requirements for the system

were specified, the use of experts (single or multiple) in developing or

testing the system, how the system was tested, and what was perceived to be

the greatest difficulty or biggest stumbling block.

w - s . At first glance, there appears to be a
huge diversity of systems being used by the Army. Knowledge-based systems
have been applied to many different tasks, including battle management, haz-
ardous material classification, selection of appropriate contract clauses,
in-house support for medical research (human vaccine testing and immunization
scheduling), and assigning a rating for psychiatric disability compensation.
The knowledge-based systems are based on regulations and knowledge elicited

from single or multiple experts in the domain area. The size of the systems .
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ranges from a number of small "in-house” aids that contain about 50 rules to a
very large system that has over 400 procedures, each containing its own set of
rules. The systems are designed to run on a variety of machines--personal

computers, main frames, Sun workstations, or Symbolics.

However, the systems are all quite similar In their goals. Most, Lut not all,
of the systems performed a support funciion iu an arca where chie cosc of the
computer making a mistake was relatively low. Generally, the systems were
designed to fuiction as an aid to a perscn waking a decision, rather than as

an actual decision maker.

Most of the systems we saw were developed by prototyping. For the most part,
requirements documents simply did not exist. Rather, the software either
evolved from an existing software program or was created informally to meet a
need of a particular department within the organizations. Typically the sy=s-
tems were developed using expert system shells (EXSYS, M-1, CLIPS) or in LISP,
which many developers see as a rapid prototyping language. When a system be-
comes a "final product," some developers see a need to convert it to another
language, such as Ada or C. This conversion is a potential problem--one that
could be very expensive and even infeasible. Furthermore, the conversion has
implications for testing, since some of the testing on the original system

will need to be repeated on the final system.

Another problem that surfaced was the use of an expert system as a tutorial
for a non-expert. Ume of the systems designed as a tutorial for non-experts
had limited capabilities. The system did not seem to teach the non-expert the
skiils necessary tc become an expert, but rather gave the user "1 year of

experience 20 times.”




This brings up some of the differences between systems designed for non-
experts vs. those designed for experts. Typically both groups interface with
the system in a similar manner (answering a series of questions or making
selections from a menu), but the expert bases the information for input on
his/her knowledge of the problem area, while the non-expert irterprets the in-
put data from other sources such as involces, billing statements, or patient
summaries. The difference in end users means that developers and testers need
to focus on different aspects of the system, depending on the end user. For
example, more emphasis may be needed on the interface, stress testing, and the
quality of the explanations when a system is designed for non-experts rather

than experts.

As stated earlier, most of these systems developed as prototypes. However, in
some rases there were plans to convert from the prototype to an operational
system. The requirements documents for these systems generally seem to focus
on system integration issues--such as access to large databases or converting
to a different shell, a different development language, or a different
hardware configuration--and not on issues relating to the expected performance
of the software. The lack of documented requirements and the "fuzzy" nature

of a knowledge-based system add to the difficulty of testing it.

e w e-Based ems. In asking what it takes to test a
knowledge-based system, we received a range of responses. Some think that
testing Al software is not any different from testing conventional software
("a rule base is just a structured database”); others believe that testing Al
software is very different and requires a multifaceted approach, to include
static testing, dynamic testing, multiattribute analysis, acceptance by ex-

perts, and questionnaires to users.




Generally, issues concerning testing the expert system were not raised early
enough in the development process. Much of the time and resources was spent
on knowledge engineering and development. As a result, testing and documenta-
tion were crowded out. The emphasis seems to be directed at obtaining a
"product" and not at making sure the "product™ worked as it should. Often
what the system should do was not clearly defined ur made explicit, which made
testing the system even more difficult. Other difficulties in testing
knowledge-based systems were the lack of well-defined standards to test
against, the lack of definition of an acceptable level of performance, the
complexity ot the knowledge base, and unavailability of experts for the
development and testing processes. The importance of test and evaluation to
the development of an expert system as well as to the ultimate acceptance of

the system by the user, sponsors, and organization must be stressed.

Test and evaluation is a critical part of the development cycie. The purpose
of test and evaluation is to ensure that the system can be used to solve the
particular problem or class of problems for which it was designed. Crucial to
the system’s ultimate acceptance and use is that the system "prove" itself to
the community of users for which it is intended. Typically, an expert is
someone we trust to solve & partlcular problem because that expert has a track
record of successful decisions. An expert system needs to prove that it can
be trusted. Part of building that trust is providing evidence that the expert
system can solve the types of problems it is designed to and can be used by
the people who need to use it. A comprehensive and multifacated approach to

test and evaluation is the way to provide that evidence.

An evaluation method tor expert systems should provide a means to rigorously

test the different parts of the system. The method should allow different




aspects of the system to be weighed differently during various stages in the
expert systems life cycle. In addition, the evaluation criteria must be ex-
pressed in terms of attributes that can be measured, either objectively or
subjectively. Evaluation of an expert system should consist of the following

kinds of tests:

Structural Tests of the Knowledge Base. Static or structural testing is
concerned with examining the underlying structure of the knowledge base,
that is, the logical consistency and logical and functional completeness
of the rules. Tests for logical consistency are aimed at finding and
correcting redundant rules, subsumed rules, conflicting rules, and un-
necessary if conditions. Tests for logical completeness are for finding
unreferenced attribute values, illegal attribute values, unreachable
conclusions, and deadends in the knowledge base. Functional complete-
ness measures the extent to which the knowledge base addresses all the
domain problems that the users have to or need to address.

Content-Specific Tests for the Knowledge Base. In this type of testing
we ask the domain expert to make judgments about the accuracy and ade-
quacy of the embedded knowledge. The judgments can be elicited in-
dividually with single experts or using group techniques with multiple
experts. In thils category of tests, the domain expert is asked to as-
sess the accuracy of the facts in the knowledge base, the accuracy of
the embedded rules, the acceptability of the knowledge representation
scheme, the adequacy of the source, and the modifiability of the
knowledge base).

Performance Tests. Performance tests are aimed at determining how well
the system carries out its designated functions. These tests can be
divided into functions for which "ground truth” answers exists and thase
for which no ground truth exists., Where ground truth exists, the per-
formance of the system can be compared with a known standard. Where no
ground truth exists, we must rely on the judgment of experts to assess
the quality of the conclusion. Performance measures should also include
measures of response time and time to accomplish the task.

Usability Tests. Usability measures incorporate a number of factors
that relate to how well the computer is adapted to the needs of the
user. Usability measures can be assessed by observation or opinion sur-
vey. Measures of usability that can be observed are the extent of use,
manner of use, and features used. Usability measures assessed by
opinion survey include confidence in system, ease of use, acceptability
of interface, acceptability of results, -cope of the application, ade-
quacy and clarity of explanations, and impact on organization.

Additionally, specific tests should be almed at determining the correct-
ness of the inference engine.




The characteristics or attributes described above can be put into a multiat-
tribute model for evaluating a knowliedge-based system. Multiattribute
analysis provides au overall framework for evaluation of a system where mul-
tiple objectives are important (Ulvila et al., 1987). The multiattribute
framework in Figure 1 summarizes the characteristics of the evaluation

strategy described above.

As confirmed by the interviews, practice often differs from this paradigm. 1In
practice, the level of testing performed on an expert system seemed to be
driven by five factors: (1) the lack of information on testing methods and
tools; (2) time constraints; (3) resource constraints; (4) mission
criticality; and (5) whether or not the system functions as a decision maker
or as an aid to a decision maker. Table 1 describes some of the methods we
found that were used teo test knowledge-based systems and shows where they fall
short in terms of the evaluation criteria specified in the multiattribute
model. The strategies are described in terms of level to which they address
testing the structure of the knowledge base, the content of the knowledge
base, performance, and usability. The level of testing is simply described as
one of four values--not addressed (NOT), ldw, medium, or high. High indicates
that a particular attribute was emphasized in the testing strategy, medium in-
dicates it was addressed but not stressed. A ranking of low indicates a low
level of attention to testing a particular attribute. NOT indicates that the

attribute was not explicitly addressed by the particular testing strategy.

Generally, the different strategies used to test the expert systems possessed
the same strengths and weaknesses. All of the testing strategies addressed
the content of the knowledge base, the correctness of the reasoning as well as

the answer. Testing was prriormed with the expert and attempts were made to
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Table 1: Testing Strategies and Level of Testing

Testing Strategy

Show the latest version of the software
to the expert;

let the expert use the software;

flag data outside boundaries;

the expert keeps a detailed log of things
that go wrong and gives it back to
developer.

Test the system with the expert as it is
being developed;

select a sample of test cases based on
actual data;

have a panel of experts determine outcomes;
have the computer determine the outcome;
stop testing when the system reaches the
same conclusion as the panel of experts 85%
of the time;

monitor the system as it is used--establish
a track record.

Select test cases based on actual data (data
from a previous year where outcome is
already known);

run test cases through the syster;

Check the output to ensure that it conforims
to Army regulations. Output i correct when
the system outcome conforms to a known
standard (or regulation specifies what
should be).

Test the interface with eventual users (does
it work? does the sequence of guestions
presented to the user seem logical?);

check the rule base (are rules missing?

can some be collapsed? are there rules not
being fired? are the rules correct--go
back to the expert);

stress-test;

change inputs;

get outputs (are the outputs received in

a timely manner? are the outputs reasonsble
based on the expert’'s experieuce in the
domain area?);

leok a* svstem effrctiveness fis the operator
happy with the results? 1is the operator happy

with the explanation facility? does the

system fit {in with the flow of the exercise?).

Level of Testing

Structure of KB:
Content of KB:
Infarence Engine:
Performance-
Correct Answer:
Correct Reasoning:
Usability:

Fit w/Organization:

Structure of KB:
Content or KB:
Inference Engine:
Performance:
Correct Answver:
Correact Reasoning:
Usability:

Fit w/Organization:

Structure of KB:
Content of KB:
Inference Engine:
Performance:
Correct Answer:
Correct Reasoning:
Usability:

Fit w/Organization:

Structure of KB:
Content of KB:
Inference Engine:
Performance:
Correct Answer:
Correct Reasoning:
Usability:

Fit w/Organization:

LOoWw
Low
NOT
Low
MED
LOW
Low
NOT

MED
NOT
MED
HIGH
Low
Low
NOT

Low
MED
NOT
MED
HIGH
Low
Lovw
NOT

MED
MED
Low
MED
HIGH
Low
MED
Low



Table 1:

Testing Strategy

Testing Strategies and Level of Testing (continued)

Level of Testing

ensure the correctness of the embedded knowledge or rules.
terviewed commented that, although experts expected to be available to test the
software, they were not.

probabilicty of failure was high.

Select test cases that approximate the
actual population. The expert determines
the output of test cases without using
the system. The expert used the system
to obtain outputs {(in this case, all of
the expert’s input data were saved); the
intended users of this system were non-
experts that would be asked to interpret
data from summary forms. The saved input
data were later used in two ways:

1) to compare the expert’s interpreta-
tion of data from summary sheets with
the non-expert’s interpretation; and

2) to re-run the system after changes
were made to the rule base. The
non-expert ran the system with the
same set of test cases. The results
of the computer were compared to the
results the expert determined without
using the system. Testing stopped
when the expert aiwi computer agreed
80% of the time,.

Establish test plan--multifaceted approach
to include static testing, dynamic testing,
multiattribute analysis (for system
performance), acceptance by experts
{feedback from outside expert as well as
"developer" expert), and questionnaires.

Structure of KB: Low
Content of KB: MED
Inference Engine: NOT
Performance: MED
Correct Answer: HIGH
Correct Reasoning: MED
Usability: MED
Fit w/Organization: LOW
Structure of KB: HIGH
Content of KB: HIGH
Inference Engine: MED
Performance: MED
Correct Answer: HIGH

Correct Reasoning: MED-HIGH
Usability: MED-HIGH
Fit w/Organization: Loy

Many of those in-

If experts were not available to test the system, the

Most of the strategies attempted to test the

performance of the expert system but this was difficult because the expected

performance or measures of performance were not made explicit or documented.

Most of the testing strategies did not sufficiently address the structure of

the knowledge base, the correctness of the inference engine, or the usability .

-10-




of the system. No one addressed the fit with the organization well. Although
all of those interviewed examinea t.ie structure of che knowledge base. The
examination of the structure was extremely difficult and time-consuming be-
cause of the lack of automated tools for static analysis. Clearly, the
testers and developers would benefi* from the availabllity of automared test-
ing tools. Most of the people realized the importance of structural or static
testing but, without automated tools, lack the resources or time to do as much

testing as they would like.

Most of the expert systems made use of one of the many expert system shells
available on the market, and no testing was specifically aimed at the inference
engine of the shell. Most assumed that, when they purchased a shell, the in-
ference engine had already been thoroughly tested. This may not be the case.
The literature on the subject indicates that perhaps only one inference engine,
CLIPS, has been formally validated. (In thelr article, "Expert System
Verification and Validation", Chris Culbert and Robert Savely of the AI section
at NASA/Johnson Space Center describe using conventional testing techniques to
validate the inference engine in CLIPS, an expert system shell.) Validating
the inference engine of a shell is especially important if a system is perform-

ing a critical function and the cost of an error by the system is high.

Because most of the systems were viewed as prototypes (designed to prove the
concept), other attributes, such as usability and fit with organization were
addressed at a low level or not at all. Lack of information or available tools
(questionaires and information on questionnaire design) may also explain the
laclk c¢f emnhasic on these two attributes. Since most of the resources were

sunk into development, resources were not avajilable to develop questionnaires.

~11-




The testing strategy of changing inputs, obtaining outputs, and asking the ex- .
pert if the results are reasonable may be appropriate for small, non-

autonomous, non-critical, in-house systems (where the cost of an error is

small) in environments where the developer and expert work closely together and
performance of the system can be continually monitored. However, when the sys-

tem is performing an important or critical function or where the cost of an er-

ror is high, more rigorous and formal testing {s necessary.
Lessons learned

Many of the lessons from the Army’s experience in knowledge-based systems re-

late to requir: . ats and issues that were not raised early enough in the
development process. Emphasis was generally placed on developing a product

that could be seen, touched, and operated. As a consequence, documentation, .

testing, and maintenance suffered. Table 2 summarizes the lessons learned.

Table 2: Lessons Learned

(¢))] Define the Problem
Issues/Question to Ask: Plick a subject that people in the organizations
really care about. Why is the system needed? What niche does it £fill?
What problem does it solve? Make sure the relevant knowledge or infor-
mation is accessible.
Impact on Testing: Allows testers to know when the problem is solved.
Alids in determining if experts exist, who they are, and if they will be
available for testing.
(2) Examine Alternative Solutions
Issues/Questions to Ask: Al is one means to solve a problem. Ex-
plicitly consider the benefit and costs of alternative approaches. Ex-
amine the benefit and cost of a knowledge-based system versus the
benefit and cost of a conventional software system versus the benefits
and costs associated with no system.
Impact on Testing: Ask if the knowledge-based system performs a func-
tion that is important enough in the organization to allecate the neces-
sary resources for its development, testing, and maintenance (some of ;
the costs to consider are the expert’s time, test case development, and (
maintenance of the knowledge base). Will you need to purchase test
tools or shells? What will you need to support the testing efforts?

-12-




(3)

(4)

(3

(6)

7

Table 2: Leusons Learuned (continued)

Start Early

Issues/Questions to Ask: Many managers ana developers of «nowlecdge-
based systems feel a need to do more work earller in the development
process. Start answering early the following kinds of questions:

. What <o you want the system to do7 What are the system s limita-
tions?

. At what frequencvy will thn <vctem he used?

L Is the system important ror rne user or organization t¢ pertorm
its missiocn or do its job’

. Who will maintain the system?

. How will the system be tested?

. Do you have the necessary resources to support testing and mair-
tenance?

. What are the milestones along the development path?

Impact on Testing: Work out the lcgistics of testing--who willi test,
what will be tested, where will testing be done, when will testing bLegr
and end, how will it be tested? Cefine the expected performance of the
system. Define milestones so that testing at various stages in develop-
ment provides useful feedback to the development process.
Define the End Users
Issues/Questions to Ask: Who will benefit most from the system? In-
volve the end user in the design, development, and testing processes.
Impact on Testing: The selected end user has ifmplications in how the
interface and explanation facility should be designed and tested. In-
volving the end users early increases the probability that the users
will accept the system.
c the Necessary Resource
Issues/Questions to Ask: It is easy to underestimate what it takes to
complete the job. Anticipate false starts. Knowledge engineering may
take longer than expected.
Impact on Testing: Without the necessary resources, such as the
expert's and user’'s time, the software may not be accepted by the users
and the project is likely to fail.
Investigate Shells
Issues/Questions to Ask: Different shells have different strengths;
pick the shell hest suited for rhe problem at hand. An expert system
shell may not be appropriate given the size or expected performance of a
system. Understand the capabilities and limitations of the shell.
Tools that help in determining which shell is best suited for a par-
ticular application would be beneficial.
Impact on Testing: Tests specifically aimed at the functioning of the
inference engine may be important for mission critical systems or sys-
tems wheie the cost of a computer error is high.

t ert’ me
Issues/Question to Ask: Make sure an expert exists. Get a commitment
from management to make that expert available. Make sure the expert is
willing to cooperate (may lack incentives). When using multiple ex-
perts nauch £ rivalry sad differing to higher rank.
Impact on Testing:. The expert must be available for test case genera-
tion and assessing the adequacy and accuracy of the embedded knowledge.
Keep the expert involved in development and testing. Show the expert
the results of his knowledge on a prototype (good for self-esteem and
may precipitate usefu. cric:ciism).

-13.




(8)

(9)

(10)

(11)

(12)

Table 2: Lessons Learned (continued) .

Define Performance Measures

Issues/Questions to Ask: Explicitly define performance measures.

Document the following:

] Computer Aspects: What are the hardware requirements, the space
requirements, the machine capacity? What are the data require-
ments? Does the system need to be ported to other hardware con-
figurations? How fast does the system need to run? What are the
formats of the input data?

The input domain and limitations of the system.

Expected Performance. Can we measure the system’s output against
some ground truth or does it requirement judgment? What do we ex-
pect in terms of response time, quality of the answer, quality of
the reasoning?

. Usability: How much do we expect the system to be used? Does it
fit in with the way the organization does business? What features
do we expect the system to provide? Which features are most im-
portant?

. The Intended User: Who is the intended user? What are the skills
required of the user? What level of explanation is required?

Impact on Testing: These issues are critical to the testing process.

Defining what is expected from the system allows the tester to know when

the system "passes” the tests,

Establish Priorities

Issues/Questions to Ask: Explicitly prioritize the various attributes

based on their relative importance. .

Impact on Testing: The explicit prioritization provides a useful means to

decide which aspects of the system require the most comprehensive testing,

especially given time and resource constraints. For example, a system
with a large and complex knowledge base designed for a "computer literate”
expert should employ a different testing strategy than a system designed
for a relatively "computer illiterate” non-expert. In the latter case,
testing should emphasize the interface with the user and the sufficiency
of the explanations and, in the former case, testing should emphasize the
completeness, consistency, accuracy, and adequacy of the knowledge base.

Test the Knowledge Base

Issues/Question to Ask: Comment the rules; indicate their sources. Ex-

amine the premises, not just conclusioens.

Impact on Testing: Investigate the static test tools to exercise the

knowledge base. (There seems to be a strong need for "generic" tools or

a library of routines that test the various aspects of a knowledge base.

Most of the "testing" currently being performed in the knowledge base is

being done by hand and those testing knowledge-based systems would

benefic greatly from the availability of such tools.)

Establish a Track Record

Issues/Question to Ask: Keep a library of cases presented to the sys-

tem. Monitor the performance of the system over time.

Impact on Testing: A library of cases allows for regression testing--

re-testing the system after changes have been made to the knowledge

base.

Instill Order
Establish a set of AI products (tools, shells) to use in an organization
and provide training. Establish training materials that help people

select valid AI gprojects.

-14-




To date, successful applications seem to be limited in scope and solve relatively
well-defined preblems. Some ¢f the pouple we talked to seemed to think thar the
future of AI in the Army is in ®litt¢le modules of AI" as part of lurger svstems,
rather than large Al systems. Generally, prototypes are regarded as usetul and
valuable for "studying the problem” but do not necessarily lead te cperational
systems. Prototyping may be noiining uwire iharn o.: otep orn the way (¢ defiring
system requirements. To develop operationai, usabie and testable systems, the
Army needs to work harder at answering the difficult questions up front, to ex-
plicitly defiae the scape of the Gppiication, the {unpat demairn, the limications
of the system, the expected level of performance, the usability requiremerts, u0d
to rigorously test those aspects of the system. Without rigorous testing, a sys-

tem cannot be a reliable and useful contributor to the Army’s mission.
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ABSTRACT

This paper presents the results of an ongoing project to develop methods for testing knowledge-based
systems. Results from four lines of inquiry are presented: a compendium of lcssons learned from testing,
quality metrics, a multiattribute utility hierarchy, and a Test Technology Program. The resuits of a personal
interview survey of the testing practices 0i knowiedge-based system developers in the U.S. Army are presented.
These irclude: a characterization and critique of common testing sirategies, an a2nalvsis of factors affecting
testing, and a presentation of lessons learned. Metrics for characterizing the quality of knowledge-bascd
systems are described. A comprehensive approach to assessing knowledge-based systems quality based on
multiattribute utility analysis is described. The general state of testing for knowledge-based systems and
artificial intelligence is described, and a comprehensive Test Technology Program is outlined.

1. INTRODUCTION

We are currently under contract to the U.S. Army Electronic Proving Ground to develop methods for
testing systems that employ artificial intelligence. Our two-and-a-half year research and development effort will
be completed by September 1990, and this paper summarizes a portion of our work to date. The major focus
of our research has been on testing knowledge-based systems or expert systems, and we have found that such
systems present some unusual problems for testers due to aspects of their typical development process and due
to their intended uses to support human decision making.

The paper is organized as follows. Section 2 presents the results from a personal interview survey of the
testing practices of knowledge-based system developers in the U.S. Army. Section 3 presents a multiattribute
utility framework for knowledge-based system quality metrics. Section 4 proposes a comprehensive Test
Technology Program.

2. COMPENDIUM OF LESSONS LEARNED
This section summarizes the findings from a personal interview survey of the testing practices of
knowlcdge-based system deveiopers in the U.S. Army The findings include a characierization of commoen
testing strategies, an identification of factors that affect testing, and an expression of lessons lcarned. More
details on these findings can be found in Constantine and Ulvila (1989, 1990).
2.1 CHARACTFRTZATION OF COMMON TESTING STRATEGIES

Our survey identified eight strategies that are commonly vsed to test expert systems.

"iais work was supported by «he U.S. Army Elcctronic Proving Ground under contract number DAEA1S-
88-C-0028. The views, opinions, and/or findings contained in this report are those of the authors and should
not be construed as an official Department of the Army position, policy, or decision unless so designated by
other documentation.

*To appear in the Proceedings of the Test Technology Symposwum I, Lauret, MD, 19-21 March 1990.




8~-01

(1) Prototype Forever. The expent receives the latest version of the software and uses it in an actual
setting. The expert monitors the sysiem in use and provides feedback on the interface, the explanaton taciny,
and the reasonableness of the system’s outputs over time.

{2) Agreemens. As the sysiem is being developed, it is tested with the expert. When an iniual version
of the system is complete, a sampie of test cases is selected based on actual data. The test cases are given 1o
an expert or a panel of experts who are asked to determine the cutcome. The same set of test cases 1S
presented to the system and the system determines the outcome. The system passes the “test” if the system
and panel of experts agree on the ouicome for some percentage (e.g., 85%) of the test cases. The system 18
put into use and monitored over time.

(3) Compliance. Test cases are selected based on past history. Those cases are presented to the system,
the system’s performance is compared with the historical results, and appropriate changes are made. Another
set of test cases is selected from current data where the outcome is not yet known. These cases are presented
to the system and the output is correct if it complies with the relevant regulations.

(4) Sarisfaction. The developer examines the knowledge base for missing rules, rules that can be
collapsed, and rules that are not being fired. The expert subjectively assesses the correctness of the rules, the
quality of the explanations, and the quality of the answers. The user assesses his or her ability 10 interface
with the system, the timeliness of the response, the reasonableness of the outputs and explanations, and how
the system fits in with the operating environment.

(5) Case-Dependent. The developer examines the knowledge base, assesses the effect of adding rules,
determines if rules can be combined, and looks for errors. A large sample of test cases is selected that
approximates the population of cases the system will receive. The expert assesses the answer 10 test cases
without using the system. Then, the expert uses the system to obtain outputs (all of the expert’s actions are
saved). The saved data reflecting the expert’s actions are analyzed and changes are made 10 the knowledge
base. It is necessary for the expert and system 10 agree some percentage (e.g., 80%) of the time. The system
is then tested with the non-expert users. The non-experts interpret the input data from summary sheets and
the differences in data input between the expert and non-expert are examined and appropriate changes are
made to the system.

(6) Organizational Testing. The interface is iteratively evaluated by the user. Interface evaluation
includes an assessment of screen design, feedback message placement, scrolling, features, menu naming, design,
and actions. The system is evaluated in a classroom setting by observing the system in use and administering
questionnaires. Observers videotape and take notes to assess how both students and instructors use the system
in an actual classroom setting. Questionnaires are administered to both students and instructors 10 gather
information regarding features used, perceived usefulness, perceived problems, and general feelings. An
experiment, using subjects in an actual classroom environment, is designed to assess the effect of using the
system on student performance.

(7) Field Testing. Each prototype is tested with past cases from saved actual data. The system is tested
in a similar operational environment for several (e.g., 3) months to obtain feedback on system effectiveness and
user interface. Appropriate changes are made (o the system. The system is then run in paraliel with the
existing process in the intended operational environment for approximately one year. During the paraliel test,
assessments are made as to how well the system is meeting the goais stated in the requirements document.

(8) Multi-Faceted. The developer performs a comprehensive static analysis of the knowledge base using
automated tools. Dynamic testing is performed to test the system with the expert using a comprehensive set of
test cases not used in development. Multiattribute analysis is used to obtain subjective measures for system
performance. The system is tested with "developer” experts as well as outside experts. Questionnaires are
administered to both developer experts and outside experts.

2.2 FACTORS THAT AFFECT TESTING
Generally, the level of testing performed on knowledge-based systems seemed to depend on four factors:

information available on testing methods and procedures, time constraints, resource constraints, and
characteristics of the development environment (such as formality and accessibility of the developers to the




users). Typicaily, wisrt ta? JUVBiOuer " A2 UST1 L300t rfe JUIAEY 1€ ARUISEIY, CIE ¥aatit e jio T 0w
and the developer worked with (ne user 10 IMP/EMERT 102 feqQUIFed SOITWAIS Changes Oon an "as needzd” b

At some level, all of the common testing strategies addressed correctness of the answer and correctreecs ~f
the reasoning. All of the systems were judged against some standard, aithough in mary €ascs that s.anfars »
simply a vague notion of "correciness.” For example, in agrcement testing, the system's omput Wia® sta+ -
“correct” if it agreed with the outcomes specified rv a panel of experts for 85% of ihe test cases. o e

dependent lesting, great care was taken to select a set cf test cases that approximated toe ¥ 's o 2 Lhe
system would be expected to handle in an operetional environment, hut all of the cases uwsnd in recring o op,
also used in development. in Beld tesuuag, the systom ~os juoged *currect” if it nlet a few perior naow « " 1

{such as a 30% reduction it downtime) specifed 1 R mgulrements Jorimenl

In one particular project—an intelligent tuionng systern—<COTECIRESS WS GO =5 UDPOLAAL dy Cuiby
reasoning, nsability, or how well the system fit inte ine irwenced oporati-aal envirnmiznn T - u
organizational testing because strategies like "agreement® and "compliance” did not sufficiently address cuhcr
usability or fit with the organization.

Manv of the tesung strategic: (protoutyp forever, agreement, ana compliance) focuse | on the ouipus
the system and diu noc directly auderess einler e sirnture or come:ts of the Lnowieage pase.  ADoOuN e
satisfaction and case-dependent strategies address Lo s ructaie ans coats=i of =+ krowledee o2ve. cue ridare
argue that they do so insufficiently due to the lack of avtomated tools for static aralysis. Most of the
developers realized the imporntance of strucitcal O static iesting, but without a«tomated wols Jucked the
resources or time to do as much testing as they would have liked. Only the muiti-faceted testing strategy used
an automated static analysis 100l, and it was developed especially for the particular application.

Most of the knowledge-based systems made use of one of the many expert system shells available on the
market, and no testing was specifically aimed at the inference engine of the shell. Most developers assumed
that, when they purchased a shell, the inference engine had already been tested thoroughly. This may not be
the case. The literature indicates that perhaps only one inference engine, CLIPS, has been formaily validated
(Culbert and Savely, 1988).

The testing strategy of changing inputs, obtaining outputs, and asking the expert if the results are
reasonable may be appropriate for smali, expendable, non-autonomous, non-critical, in-house systems (where
the cost of an error and the cost of the system are extremely low), in environments where the developer and
the expert work closely together and the performance of the system is continually monitored. But be prepared;
this system is likely to remain a prototype forever. When a knowledge-based system is to be used by a large
number of individuals, replace an existing method for solving a particular problem, perform an important or
critical function or where the cost of a system error may be high, more rigorous and thorough testing is
necessary. One approach for more comprehensive test and evaluation is the multiattribute framework
described in Section 3.

2.3 LESSONS LEARNED
The same difficulties were encountered by many knowledge-bhased system testers. These included:
. issues concerning or affecting testing were not raised early enough in the development process:
e  in a resource-constrained environment, it was difficult to test thoroughly;

. the intended purpose or function of the knowledge-based system was not defined clearly or
explicitly;

. static analysis tools were unavailable for testing a complex knowledge base;
*  experts were uhavaiialie during testing.

Listed below are some of the lessons learned and suggestions for developing testable knowlenor-based
systems.
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{(2) Give the know ledec -based system an apprenuceship priod in the intended - perating envircrment. Keep
a library of cases presented to the system, observe the system in use, and momitor its performance. An
Apprenuicesiip pericd oy e escennal {00 assessiag bow Lo osyutere wRL fortom C1 2o e s hion )
«avironment and for fnding ¢ rors not found in previous testing eff rts.

(3) Instill order. tsablish a sei of products (tcols, shetls) to use, providu UL ining, and J.¢ your oom
tools to support testing if the vendor will not provide them. Automated tools for static analysis are ¢ssenual
for testing a knowledge base thoroughly and shouid be availadble to the developers of knowledge-based systems.
Since there are no industry standards for knowledge-based systems, speafy fonnats, wming comentions,
procedures for commenting rules, and other programming standards for developers in a particul.r organizaion
to use when building knowledge bases and knowledge-based systems.

To date, successful applications seem t¢ be limited in scope apd solve relatively well«defireq prot o
Many of those interviewed indicated that the ruture of Al is 1a “liitie modules of Al” as part ot larger ~aemms,
rather than large Al systems., Generally, proto.ypes were regarded as usefui and vatuabiz 101 studying the
problem” but they did not necessarily lead to operational systems. Prototyping may be nothing more than one
step on the way to defining system requirements. To develop operational, usable, and testabie systems,
developers nced to work harder at answering the difficult questions up-front, to define explicitly the scope of
the application, the input domain, the limitations of the system, the expected level of performance, the usability
requirements, and to rigorously test those aspects of the system. Without rigorous testing, a system cannot he
a reliable a1d usefyl contributor.

3. AMULMOATTRIBUT: UTILITY HiIERARCHY O QU [ amar >
3.1 THE MULTIATIRYBUTE UTILITY HIEXKARCHY .

Multiattribute utility (MATL) analysis is 2 method 17 provides 1 ¢ atb wast'cally ar o onriate procedure
for assessing values with multiple effects (see, e.g., Keeney 2nd Raiffa, 1976). As avplied to testing knowiedge-
based systems, MAU provides a framework for representing, in a hierarchy, the many features and criteria
appropriate for judging the gaolity. accepiability, and stren;ths and weakn~ss2e ¢f knowied je-besed systems.
The MAU framework presented in Figure 1 shows our proposed list of quality factors for testmg knowledge-
based system software. More details on MAU analysis, the hierarchy in Figure 1, and the quality metrics are
contained in Adelman and Ulvila (forthcoming).

3.2 QUALITY METRICS

The following paragraphs provide brief definitions of the quality metrics that are represented as attribulcs
in the nierarck. ;.

Logical Consistency. Re. ngaut ru'es ar rules or gronps 0 reles ¢hiat hav evennady ‘e ane
CONCILIC 08 N0 CONCIUSIOtS. c(JWIVANS ' €10 05 Qi 1o Aupicalt 1ues 07 e e ten o e uvaleor tutes (ule
groups) v word My variaticry R tmes § v e e bies, OF toe 0 ds0 o we en 1e 0 ar? poo TRy
Subsumest ruies occar wiet ore fuie's (oF oroep ¢ ru.es’y meamry S Greday CRpresst i 1 anGinet fug
group O 1-mcs) that reaches *he same coclusten 1rdm simnar nu: rest restrictive ¢ )ncmc Lo
z‘n,,,‘(. lp e cwmawes B S A sy 4% e - PR N T I | ’ .
combination violates princioies ot lofic (e.a., transitivity).  (Circuiar tules are :ues that (:aQ ore pack 1o an
it oo oatermediz ) conditicn mistead OF a CIRCIUSIGY,

Logical Completeness. Unreferenced attribute vaiues are values on 3 conation that ar- not delinew
CORSCHLLinksyy witaa Lo ilbaw o PR . o . .
kat are ~magide the accentable e or ropee of alues for that onnd™d 1n Ay croearhgt oo vochady 0o
conclusion that cannot be iriggercs & 710 MG SOWlGdBE Tmalie s U0 TG ST ot o
connect input conditions wiih o lj-ul ornclusions,
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Auncrran Cntpletetice:. T siced oy Lo o oo Tnse e b e all dnnit e 0 D e e
need 10 be addresseu. Ay idadCiaoulusion COMPRity wioortd:  Uie RBUwICL e fdol b HiREe an
conclusions ihat gead to be addressed. [dentified knowledge iimitations: ihe rilcs in the knowledpe bawe cin ‘
rell the user if input conditions currently being processed cannot be addressed. An~logously, if the expert
T o sUCh (ual @ usel v speily 4 conclusion 1h wider v IGLaily e npul Lonitiofs thal wouuid pentiiee
i1, an expert system that was knowledgeable of its limitations would tell users if a conclusion currently being
processed as input could not be addressed.

Knowledge-Base Cortent.  Accuracy of facts: the oaality of the unzoaditionat statements in the krowiedge
base. Accuracy of rules: the quality of the conditional statements in the knowiedge base representing . -pert
judgment. Knowledge representation acceptability: whether or not the scheme for repicsenting kucmedge is
acceptable to other domain experts and knowledge engineers. Adequacy of source: the quality of the persons
or documentation used to create the knowiledge base. Modifiability of knowledge base: the extent to which
the knowledge base can be changed.

Inference Engine: 1he extent to which the inference engine provides error-free propagation of rules,
frames, probabilities, or other representation of knowledge us uncertainties used in the s stem.

Computer System. Design: the extent to which the expert system runs on the approved computer
hardware and operating system and utilizes the preferred complement of equipment and features.  Portability:
how easily the expert system can be transferred to other computer systems.

Computer Usage. Set-up time: the amount of time required for the computer operator to locate and
load the program (if any) and the time to activate the program. Run time: the amount of time required to
run the program with a realistic set of input data. Space requirements: the amount of RAM and disk space
required by the program. Hardware reliability: the percentzge of time the comnuter system could be expected
to be operating effectively. Hardware capability: the comp.ter svstem’s total amount of RAM and disk space.
Effect of feature use/jjumping: the exteat 1w which moving {rom various pars of ifl. PiUgLalt - duscy cin s,
Degradation: hoss wel! the progiany saves date aid aanfyea 2hd Prtitdis wCatin.cd o sler o ere -
program or system crash or power outage. Handling input errors: the extent 1 which the Dragram prohsbits
program crash and tells the user whai to do afier an input mistake.

System Integration. Formats: the extent to which the program uses input and output formats that are
consistent with the intended use. Data requirements: the extent to which the program’s data requirements are
consistent in content, quantity, quality, and timeliness with those available to the intended uscr organization.
Documentation: the adequacy of material regarding the program’s use and maintenance. Skill requirements:
the extent to which the program can be operated by appropriately skilled individuals.

Performance against Ground Truth. Speed: the amount of time it takes a user working with the expert
system to solve representative problem scenarios. Accuracy: the degree of overlap in the distributions of
belief values when the hypothesis is true versus false (see Lehner and Ulvila, 1990). Bias: the difference in
the proportion of false negatives (hypothesis is true but system says false) to false positives (hypothesis is faise,
but system say it's truc) (see Lehner and Ulvila, 1990).

Judgmental Performance. Response time:  the judgments of users regarding the adequiacy of the amount
of time the expert systewn s i react ta inpres. Tim: 1o accomplish task: the judgmens of users regarding
the adequacy of the amoun: of time reguived 1~ perform the task when using the et sviem Quality of
answers: the judgments of users and experis regaxdmg the system’s capability. Quality of reasons: the
judgments of users and experts regarding the adequacy of the system’s justification {Or it answers.

Observable Usability. Extent ot use: how much users emplov the expert svstem 10 pcnmm the tast.
Manner of use:; the way in which users employ vhe Systomn and .0 ISEQERN o tding foe Jrodians i naess
different modules, the way that intcrmediate and final outputs are pCorporarc:d wmie the o7y roselts, and e
use of interfaces. Features used: the extent to which different aspects of the expert system are employcd by

users.

Opinions about Usabiluy. Coutias o, hud Whubident users jeet 12 Laning aCtiGis Lasaad 0N WOL: ., .
the expert systcm. Ease of use: how easy users judge the system is t0 use atter they have compict=d « 2




B~01

and become familiar with the system. AccCeptaviiily o1 paisommactune inrerscuca process: the extent to which
users assess that they and the system are performung the tasks or activities tor which they are best suited.
Acceptability of resuits: the users’ judgments regarding the adequacy of the system's capability. Accopuability
of representation scheme: the users’ judgments regarding the adequacy of the system's way of presenting
knowledge. Scope of application: the users’ judgments regarding the adequacy of the expert system in
addressing domain problems. Adequacy of presentation and trace: the users’ judgments regarding the
acceptability of the system’s presentation of its reasoning process. Transparency of expert system: the extent
to which the system’s reasoning process is clear and understandable to its users.

Organizational Impact. Impact on work style, workload, skills, and training: the judgments or users
regarding the impact of the expert system on how tiey do their job, or the skills and training reqmired to
perform it effectively. Impact on organizational procedures and structure: the judgments of users regarding
the impact of the expert system on the organization’s operations. Input-output: the users’ judgments :cgurding
the adequacy of all the expert system’s displays except those tracing the reasoning process

3.3 USING THE METRICS AND HIERARCHY IN TESTING

The basic approach to using the MAU hierarchy in testing knowledge-based systems is to assess thz
performance of the system along each of the metncs, determine the relative importance of the metnics, and
combine these factors in an overall characterization of the system being tested. The detailed nrocedures for
applying the method are beyond the scope of this paper (see Adelman and Ulvila, forthcoming), but th-
following gives some idea of the kinds of techniques that can be used.

Depending on the metric, technical, empirical, or subjective methods might be used. Technical methods
are often used in static software testing to characterize the knowledge base and perform tests for logical
consistency and completeness. Technical methods can also record the physical parameters of the dynamic
operation of the system, such as speed and computer usage. Empirical methods determine objectively
questions of fact. These methods could be used to assess performance, content, and observed usability.
Subjective methods rely on judgments for assessments. These could be the judgments of experts (e.g., on
performance) or the judgments of users (e.g., on usability). Specific techniques for eliciting judgments,
including the use of questionnaires, are presented in Adelman and Ulvila (forthcoming).

In order 1o provide overall or summary assessments of the performance of the sysic..i being tested,
assessments are needed of the relative importance of the various measures or criteria. Where these
assessments come from depends on the circumstances of the test. In many cases, it may be appropriate for the
Program Manager to indicate the relative importance of the criteria. In other cases, guidance might be given
in a requirements document. In some cases, the tester may have to use what information he can gather to
infer the intended use of the system and assign relative importance weig .ts himself. Adelman and Ulvila
(forthcoming) suggest different sets of weights based on the intended use of the system.

Combining the assessments of the performance of the system against the criteria and the relative
importance of the criteria, the tester can make assessments of the system at any level in the hierarchy.
Sometimes this assessment is aided by introducing some fictitious systems as reference points (see "ilvi'e 2t al,
1987). For example, a "passing score” might be hypothesized for each measure. The system can then be
compared measure-by-measure against .this hypothetical "passing” system as weil as averall (e.g., if the tested
system performs better in some areas and worse in others). The hierarchy provides a consistent and structured
framework for encoding engineering judgment. The application of the method is facilitated by the computer
support system that will be produced in our project.

As a parting thought on the hierarchy, we offer the opinion that an eclectic approach to testing,
combining technical, empirical, and subjective methods, is the most effective. As Riedel and Pitz (1986) point
out, many people erroneously assume that objective, empirical measurement is the most valid and, therefore,
preferred type of data to collect. However, the preference for a particular type of data depends on the relative
importance of the criterion being measured by those data. If the system’s performance in solving test cases is
the most important criterion, ther objective empirical data will be the most important type of data to collect.
However, if the user’s opinion of the expert system is the most important criterion, which is often the case for
systems designed to assist experts, then subjective data will be the most important type of data to collect.
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4. A TEST TECHNOLOGY PROGRAM FOR ARTIFICIAL INTELLIGENCE

The last few years have seen an explosion of interest in testing artificial intelligence and knowledge-bascd
systems. As one indication, over 95 papers have appeared on the topic since 1987. However, there is still a
long way to go for the testing of artificial intelligence (AI) and knowledge-based systems to reach the lev=i of
conventional software testing. This section sketches the components of a test technology program, which tould
substantially advance the science and practice of testing Al

(1) Assess and codify the state-of-the-art in testing. The Al testing community needs to continue s
efforts to get its arms around all the diverse Al testing activities. This requires a comparison and contrast of
activities (a) within a particular activity area (e.g., various static testing approaches), and (b) across areas (e¢.g.,
static testing vs. dynamic testing vs. use of experts vs. experiments, etc.). We can easily imagine task forces
within and across activity areas, with the result being a major reference work in the field for years to come.

(2) Develop Al testing laboratories. There need to be empirical evaluations of alternative testing
approaches (and products) within and across activity arez , as well as of completed expert systems and expert
system shells in order to assess their adequacy. The Army may want to set up government or commercial
laboratories (with no vested interests, e.g., not at product vendors) whose mission is to perform such empirical
evaluations. It may be most cost-efficient to have different laboratories specialize in different areas, although
this may be premature at this point.

(3) Package Al testing approaches and products for Army personnel. A significant effort is required to
transfer Al testing technology to Army personnel, and that cffort needs to be managed carefully since items 1
and 2 above have yet to be performed. Elements of this include a training program with courses and a place
where testers can get hands-on experience, computerized support, and texts.

(4) Direct efforts toward assessing the value of integranrg Al testing into the development rocess. 1t .
often argued that such integration will result in better Al systems and redured development costs, but we are
not aware of any empirical studies testing this hypothesis. This could be the first step of a larger project to

" get testers involved earlier in the development process, to ensure that things such as requirements documents

are produced to aid in testing. Managers have to be shown that this involvement is worthwhile, however.

(5) Direct efforts toward assessing the relative effect of knowledge elicitation techniques, domain experts,
knowledge engineers, representation schemes, and problem domains on knowledge-base quality. It seems quite
appropriate for the Al testing community to evaluate the adequacy of the methods that go into building an
expert system, not just the finished products (i.., systems). This would be a major undertaking but especially
important if Al is here to stay (e.g., sec Adelman, 1989). This would also include the development of testing
techniques for *funny logics” (4-valued, non-monotonic, possible-worlds, probabilistic) where appropriate tests
do not always exist. Present techniques are focused primarily on rule-based systems (possibly with extensions
to frames) and techniques may be needed for other types of systems.

(6) Develop testing tools. ‘The five items above are directed at the "science” of testing Al. This item is
directed at the "engineering.” Tcols are necded that get existing methods into the hands of wsters. These
include:

static knowledge-hased testing tools—for rule-based logics, frame-based logics, and other logics:

® a "requirements” generator—an automated system that will help a tester gencrate a requirem i
document from an examination of the system;

e  benchmarks and other testing tools for shells and inference engines;

. simple dynamic testing tools (e.g, to keep track of what is going on during the running of the
system)——again availabic .0r puicdase and use;




. comprehensive tools—-such as extensions of the multiattribute utility analysis tool mentioned in
Section 3;

» integrative tools to tie other tools together.
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